Fuzzy fusion operators to combine results of complementary medical image segmentation techniques
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Sameti and R. K. Ward, “A fuzzy segmentation algorithm for mammogram partitioning,” inProc. 3rd Int. Workshop on Digital Mammography, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, Eds., pp. 471–474, Elsevier Science, Amsterdam (1996).
Chen, 1997, CVGIP: Graph. Models Image Process., 59, 349
D. Guliato, R. M. Rangayyan, J. A. Zuffo, and J. E. L. Desautels, “Detection of breast tumor boundaries using iso-intensity contours and dynamic thresholding,” inProc. 4th Int. Workshop on Digital Mammography, N. Karssemeijer, M. Thijssen, J. Mendris, and L. van Erning, Eds., pp. 253–260, Kluwer Academic, Dordrecht (1998).
D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels, “Segmentation of breast tumors in mammograms by fuzzy region growing,” inProc. 20th Annu. Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. II:1002–1004 (and four pages in CD-ROM) (1998).
A. Rosenfeld and A. C. Kak,Digital Picture Processing, 2nd ed., Academic Press, New York (1982).
A. Hadjarian, J. Bala, S. Gutta, S. Trachiots, and P. Pachowicz, “The fusion of supervised and unsupervised techniques for segmentation of abnormal regions,” inProc. 4th Int. Workshop on Digital Mammography, pp. 299–302, Kluwer Academic (1998).
G. J. Klir and B. Yuon,Fuzzy Sets and Fuzzy Logic, Prentice Hall, Englewood Cliffs, NJ (1995).