Fuzzy Typological (Re)arrangement: a Prototype of Rethinking the Typology of Roman Tablewares from Sagalassos, Southwest Anatolia
Journal of Archaeological Method and Theory - Trang 1-54 - 2023
Tóm tắt
Organizing archaeological artefacts under a conceptual system is part and parcel of archaeological research. As an abundant material category, pottery artefacts classified in an effective typological model provide a rich source of information for the discipline. However, building a typological model from scratch, as well as maintaining it, often represents a challenge. To support archaeological research, automated methods are increasingly utilized in sustaining classification models. Yet, there is potential for advancement in creating, rethinking, and updating typological arrangements by means of digital, label-driven, or data-driven algorithmic approaches. In this paper, we take a step towards fulfilling this potential while highlighting the fuzziness involved in typological arrangements. We present a complete research pipeline of pottery form quantification, fuzzy-type description, and fuzzy-type definition which is in principle applicable to any typological model. The methodological pipeline is implemented, first, in rim segments to algorithmically construct polythetic rim descriptors; second, in complete profiles to algorithmically connect the global form with the attributed functional class; and third, in types to investigate within-class form variation and its chronological relevance. This paper provides tools to formalize the ambivalence of typological classification using fuzzy logic and revisit the theoretical model to investigate the vagueness of belonging to a class based on morphological aspects of pottery profiles.
Tài liệu tham khảo
Adams, W. Y., & Adams, E. W. (1991). Archaeological typology and practical reality A Dialectical Approach to Artifact Classification and Sorting. Cambridge University Press.
Albero, S. D., Calvo, T. M., & Garcia, R. J. (2016). Formal analysis and typological classification in the study of ancient pottery. In A. Hunt (Ed.), The Oxford Handbook of Archaeological Ceramic Analysis (pp. 181–199).
Alcaide, D., & Aerts, J. (2020). Spanning trees as approximation of data structures. IEEE Transactions on Visualization and Computer Graphics, 1–1. https://doi.org/10.1109/TVCG.2020.2995465.
Angelov, P. P., & Gu, X. (2018). Empirical Fuzzy Sets. International Journal of Intelligent Systems, 33(2), 362–395. https://doi.org/10.1002/int.21935
Anichini, F., Dershowitz, N., Dubbini, N., Gattiglia, G., Itkin, B., & Wolf, L. (2021). The automatic recognition of ceramics from only one photo: The ArchAIDE app. Journal of Archaeological Science: Reports, 36, 102788. https://doi.org/10.1016/j.jasrep.2020.102788
Anichini, F., Francesco Banterle, Garrigós, J. B. i, Callieri, M., Dershowitz, N., Dubbini, N., Diaz, D. L., Evans, T., Gattiglia, G., Green, K., Gualandi, M. L., Hervas, M. A., Itkin, B., Fernandez, M. M. i, Gascón, E. M., Remmy, M., Richards, J., Scopigno, R., Vila, L., … Zallocco, M. (2020). Developing the ArchAIDE application: A digital workflow for identifying, organising and sharing archaeological pottery using automated image recognition. Internet Archaeology, 52. https://doi.org/10.11141/ia.52.7.
Banning, E. B. (2020). The archaeologist’s laboratory. Springer International Publishing.
Barceló, J. A. (1996). Heuristic classification and fuzzy sets. New tools for archaeological typologies.
Baxter, M. J. (2009). ARCHAEOLOGICAL DATA ANALYSIS AND FUZZY CLUSTERING. Archaeometry, 51(6), 1035–1054. https://doi.org/10.1111/j.1475-4754.2008.00449.x
Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.
Bilgiç, T., & Türkşen, I. B. (2000). Measurement of membership functions: Theoretical and empirical work. In D. Dubois & H. Prade (Eds.), Fundamentals of Fuzzy Sets (Vol. 7, pp. 195–227). Springer. https://doi.org/10.1007/978-1-4615-4429-6_4
Bouchon-Meunier, B., Dotoli, M., & Maione, B. (1996). On the choice of membership functions in a mamdani-type fuzzy controller. Citeseer, 7.
Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3(1), 1–27. https://doi.org/10.1080/03610927408827101
Calliari, I., Canal, E., Cavazzoni, S., & Lazzarini, L. (2001). Roman bricks from the Lagoon of Venice: A chemical characterization with methods of multivariate analysis. Journal of Cultural Heritage, 2(1), 23–29. https://doi.org/10.1016/S1296-2074(01)01110-4
Caple, J. (2017). Elliptical Fourier analysis: Fundamentals, applications, and value for forensic anthropology. International Journal of Legal Medicine, 16.
Cardillo, M. (2010). Some applications of geometric morphometrics to archaeology. In A. M. T. Elewa (Ed.), Morphometrics for Nonmorphometricians (pp. 325–341). Springer. https://doi.org/10.1007/978-3-540-95853-6_15.
Carlo, J. M., Barbeitos, M. S., & Lasker, H. R. (2011). Quantifying complex shapes: Elliptical Fourier analysis of Octocoral Sclerites. The Biological Bulletin, 220(3), 224–237. https://doi.org/10.1086/BBLv220n3p224
Chambers, J. M., Freeny, A. E., & Heiberger, R. M. (1992). Analysis of variance; Designed experiments. In Statistical Models in S (1st ed.). Routledge.
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., & Borges, B. (2021). Shiny: Web application framework for R (R package version 1.7.1). https://CRAN.R-project.org/package=shiny. Accessed 26 July 2023.
Christmas, J., & Pitts, M. (2018). Classifying and Visualising Roman Pottery using Computer-scanned Typologies. Internet Archaeology, 50. https://doi.org/10.11141/ia.50.14
Cintas, C., Lucena, M., Fuertes, J. M., Delrieux, C., Navarro, P., González-José, R., & Molinos, M. (2020). Automatic feature extraction and classification of Iberian ceramics based on deep convolutional networks. Journal of Cultural Heritage, 41, 106–112. https://doi.org/10.1016/j.culher.2019.06.005
Daems, D., & Poblome, J. (2022). The Hellenistic pottery of Sagalassos: A Typological Update. Manufacturers and Markets: The Contributions of Hellenistic Pottery to Economies Large and Small, 4, 607–617.
Daems, D., van der Enden, M., Poblome, J., & Talloen, P. (2019). The Hellenistic pottery repertoire made at Sagalassos, SW Anatolia. Daily Life in a Cosmopolitan World. Pottery and Culture during the Hellenistic Period, 2, 81–96.
De Leeuw, J., & Mair, P. (2015). Shepard diagram. In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef: Statistics Reference Online (1st ed.). Wiley. https://doi.org/10.1002/9781118445112
Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1, 269–271.
Dubois, D. (2006). Possibility theory and statistical reasoning. Computational Statistics & Data Analysis, 51(1), 47–69. https://doi.org/10.1016/j.csda.2006.04.015
Dubois, D., & Prade, H. (1988). Possibility theory: An approach to computerized processing of uncertainty (Vol. 41). Plenum Press. https://doi.org/10.1002/(SICI)1097-4571(199003)41:2<153::AID-ASI16>3.0.CO;2-U
Dubois, D., & Prade, H. (2015). Possibility Theory and Its Applications: Where Do We Stand? In J. Kacprzyk & W. Pedrycz (Eds.), Handbook of Computational Intelligence (p. 30). Springer.
Dubois, D., & Prade, H. (2021). Membership Functions. In M.-J. Lesot & C. Marsala (Eds.), Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications (Vol. 394, pp. 5–20). Springer International Publishing. https://doi.org/10.1007/978-3-030-54341-9.
Duistermaat, K. (2016). The Organization of Pottery Production: Toward a Relational Approach. In Oxford handbooks series (pp. 114–147). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199681532.013.9.
Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3(3), 32–57. https://doi.org/10.1080/01969727308546046
Dunn, O. J. (1964). Multiple Comparisons Using Rank Sums. Technometrics, 6(3), 241–252. https://doi.org/10.1080/00401706.1964.10490181
Dunnell, R. C. (1971). Systematics in prehistory. The Free Press.
Fox, J. (2015). Applied Regression Analysis and Generalized Linear Models. SAGE Publications.
Fox, J., & Weisberg, S. (2018). An R Companion to Applied Regression. SAGE Publications.
Frey, B. J., & Dueck, D. (2007). Clustering by Passing Messages Between Data Points. Science. https://doi.org/10.1126/science.1136800
Gansell, A. R., van de Meent, J.-W., Zairis, S., & Wiggins, C. H. (2014). Stylistic clusters and the Syrian/South Syrian tradition of first-millennium BCE Levantine ivory carving: A machine learning approach. Journal of Archaeological Science, 44, 194–205. https://doi.org/10.1016/j.jas.2013.11.005
Garibaldi, J. M., & John, R. I. (2003). Choosing membership functions of linguistic terms. The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ ’03., 578–583. https://doi.org/10.1109/FUZZ.2003.1209428.
Garibaldi, J. M., Musikasuwan, S., Ozen, T., & John, R. I. (2004). A case study to illustrate the use of non-convex membership functions for linguistic terms. 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542), 3, 1403–1408. https://doi.org/10.1109/FUZZY.2004.1375377.
Gero, J., & Mazzullo, J. (1984). Analysis of Artifact Shape Using Fourier Series in Closed Form. Journal of Field Archaeology, 11(3), 315–322. https://doi.org/10.1179/009346984791535467
Gilboa, A., Karasik, A., Sharon, I., & Smilansky, U. (2004). Towards computerized typology and classification of ceramics. Journal of Archaeological Science, 31(6), 681–694. https://doi.org/10.1016/j.jas.2003.10.013
Green, D. F. (1975). Testing a traditional typology using cluster analysis. Proceedings Annual Conference on Computer Applications in Archaeology, 25–32.
Gualandi, M. L., Gattiglia, G., & Anichini, F. (2021). An Open System for Collection and Automatic Recognition of Pottery through Neural Network Algorithms. Heritage, 4(1), 140–159. https://doi.org/10.3390/heritage4010008
Hardy-Smith, A. (1974). Post-medieval pot shapes: A quantitative analysis. Science and Archaeology, 11, 4–15.
Harris, T. R., Stoddard, S. W., & Bezdek, J. C. (1993). Application of Fuzzy-Set Clustering for Regional Typologies. Growth and Change, 24(2), 155–165. https://doi.org/10.1111/j.1468-2257.1993.tb00958.x
Hastie, T., & Tibshirani, R. (1986). Generalized Additive Models. Statisical Science, 1(3), 297–318.
Hayes, J. W. (1991). The Hellenistic and Roman Pottery [Paphos]: By JW Hayes. Department of Antiquities, Cyprus.
Hermon, S., & Niccolucci, F. (2002). A fuzzy logic approach to typology in archaeological research. The Digital Heritage of Archaeology: CAA, 307–310.
Hermon, S., Niccolucci, F., Alhaique, F., Iovino, M.-R., & Leonini, V. (2004). Archaeological typologies-an archaeological fuzzy reality. BAR International Series, 1227, 5.
High-Steskal, N., Rembart, L., & Katzjäger, D. (2019). Terminology for the description of the shape of pottery fragments from Hellenistic and Roman contexts. https://zenodo.org/record/3442243.
Hinton, G., & Roweis, S. (2002). Stochastic Neighbor Embedding.
Hoggard, C. S., McNabb, J., & Cole, J. N. (2019). The Application of Elliptic Fourier Analysis in Understanding Biface Shape and Symmetry Through the British Acheulean. Journal of Paleolithic Archaeology, 2(2), 115–133. https://doi.org/10.1007/s41982-019-00024-6
Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric Statistical Methods. John Wiley & Sons.
Kafetzaki, D. (2022). Morphotype (0.1.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.6760148
Kafetzaki, D. (2022). MorphotypeShiny (0.1.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.6760607
Kafetzaki, D. (2023). SSDM (0.1.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.8025851
Kampel, M., & Sablatnig, R. (2007). Rule based system for archaeological pottery classification. Pattern Recognition Letters, 28(6), 740–747. https://doi.org/10.1016/j.patrec.2006.08.011
Karasik, A., & Smilansky, U. (2011). Computerized morphological classification of ceramics. Journal of Archaeological Science, 38(10), 2644–2657. https://doi.org/10.1016/j.jas.2011.05.023
Karasik, A., Smilansky, U., & Beit-Arieh, I. (2005). New Typological Analyses of Early Bronze Age Holemouth Jars from Tel Arad and Southern Sinai. Tel Aviv, 32(1), 20–31. https://doi.org/10.1179/tav.2005.2005.1.20
Karl, S., Houska, P., Lengauer, S., Haring, J., Trinkl, E., & Preiner, R. (2022). Advances in digital pottery analysis. It - Information Technology, 64(6), 195–216. https://doi.org/10.1515/itit-2022-0006
Kaufman, L., & Rousseeuw, P. J. (2009). Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons.
Kempton, W. (1981). The Folk Classification of Ceramics: A Study of Cognitive Prototypes. Elsevier.
Klir, G. J. (1999). On fuzzy-set interpretation of possibility theory. Fuzzy Sets and Systems, 108(3), 263–273. https://doi.org/10.1016/S0165-0114(97)00371-0
Kobylinski, Z., & Buko, A. (1992). Computer clustering in the analysis of non-morphological attributes of pottery sherds: Two examples from Poland. Computing the Past. Computer Applications and Quantitative Methods in Archaeology CAA, 92, 349–356.
Kowalczyk, R. (1998). On linguistic approximation of subnormal fuzzy sets. 1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353), 329–333. https://doi.org/10.1109/NAFIPS.1998.715600.
Kowalczyk, R. (1999). On numerical and linguistic quantification in linguistic approximation. IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028), 5, 326–331. https://doi.org/10.1109/ICSMC.1999.815570.
Kurnianggoro, L., Wahyono, & Jo, K.-H. (2018). A survey of 2D shape representation: Methods, evaluations, and future research directions. Neurocomputing, 300, 1–16. https://doi.org/10.1016/j.neucom.2018.02.093
Lai Chung, F., & Lee, T. (1994). Fuzzy competitive learning. Neural Networks, 7(3), 539–551. https://doi.org/10.1016/0893-6080(94)90111-2
Leese, M. N., & Main, P. L. (1983). An approach to the assessment of artefact dimension as descriptors of shape. Computer Applications in Archaeology, 171–180.
Lenardi, M. J., & Merwin, D. E. (2010). Towards Automating Artifact Analysis: A Study Showing Potential Applications of Computer Vision and Morphometrics to Artifact Typology. In A. M. T. Elewa (Ed.), Morphometrics for Nonmorphometricians (pp. 289–305). Springer. https://doi.org/10.1007/978-3-540-95853-6_13.
Lestrel, P. E., Cesar, R. M., Jr., Takahashi, O., & Kanazawa, E. (2004). A Fourier-wavelet representation of 2-D shapes: Sexual dimorphism in the Japanese cranial base. Anthropological Science, 112(1), 3–28. https://doi.org/10.1537/ase.00069
Li, M., An, H., Angelovici, R., Bagaza, C., Batushansky, A., Clark, L., Coneva, V., Donoghue, M. J., Edwards, E., Fajardo, D., Fang, H., Frank, M. H., Gallaher, T., Gebken, S., Hill, T., Jansky, S., Kaur, B., Klahs, P. C., Klein, L. L., … Chitwood, D. H. (2018). Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace. Frontiers in Plant Science, 9, 553. https://doi.org/10.3389/fpls.2018.00553.
Liming, G., Hongjiet, L., & Wilcockî, J. (1989). The analysis of ancient Chinese pottery and porcelain shapes: A study of classical profiles from the Yangshao culture to the Qing dynasty using computerised profile data reduction , cluster analysis and fuzzy boundary discrimination. 362–374. /paper/The-analysis-of-ancient-Chinese-pottery-and-shapes-Li-ming-Hongjiet/d9d6a82b2090ac4a2cd1544bff57758353ad7906.
Lo Buglio, D., Lardinois, V., & De Luca, L. (2013). Revealing shape semantics from morphological similarities of a collection of architectural elements: The case study of the columns of Saint-Michel de Cuxa. 2013 Digital Heritage International Congress (DigitalHeritage), 465–472.https://doi.org/10.1109/DigitalHeritage.2013.6743785.
Lucena, M., Fuertes, J. M., Martínez-Carrillo, A. L., Ruiz, A., & Carrascosa, F. (2017). Classification of archaeological pottery profiles using modal analysis. Multimedia Tools and Applications, 76(20), 21565–21577. https://doi.org/10.1007/s11042-016-4076-9
Lucena, M., Martínez-Carrillo, A. L., Fuertes, J. M., Carrascosa, F., & Ruiz, A. (2016). Decision support system for classifying archaeological pottery profiles based on Mathematical Morphology. Multimedia Tools and Applications, 75(7), 3677–3691. https://doi.org/10.1007/s11042-014-2063-6
Main, P. L. (1987). Accessing outline shape information efficiently within a large database II: Database compaction techniques. Computer and Quantitative Methods in Archaeology, 1987, 243–251.
Martínez-Carrillo, A. L., Lucena, M. J., Fuertes, J. M., & Ruiz, A. (2010). Morphometric Analysis Applied to the Archaeological Pottery of the Valley of Guadalquivir. In A. M. T. Elewa (Ed.), Morphometrics for Nonmorphometricians (pp. 307–323). Springer. https://doi.org/10.1007/978-3-540-95853-6_14.
Martin-Rodilla, P., & Gonzalez-Perez, C. (2019). Conceptualization and Non-Relational Implementation of Ontological and Epistemic Vagueness of Information in Digital Humanities. Informatics, 6(2), 20. https://doi.org/10.3390/informatics6020020
McInnes, L., Healy, J., & Melville, J. (2020). UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv:1802.03426[Cs, Stat]. http://arxiv.org/abs/1802.03426.
Meyza, H. (2007). Nea Paphos. 5, Cypriot red slip ware: Studies on a late Roman Levantine fine ware.
Migliorini, S., Quintarelli, E., & Belussi, A. (2022). Tracking Data Provenance of Archaeological Temporal Information in Presence of Uncertainty. Journal on Computing and Cultural Heritage, 15(2), 1–32. https://doi.org/10.1145/3480956
Mingqiang, Y., Kidiyo, K., & Joseph, R. (2008). A Survey of Shape Feature Extraction Techniques. Pattern Recognition, 15(7), 43–90.
Navarro, P., Cintas, C., Lucena, M., Fuertes, J. M., Delrieux, C., & Molinos, M. (2021). Learning feature representation of Iberian ceramics with automatic classification models. Journal of Cultural Heritage, 9.
Neal, F. B., & Russ, J. C. (2012). Measuring shape. CRC Press.
Niccolucci, F., D’Andrea, A., & Crescioli, M. (2001). Archaeological applications of fuzzy databases. Bar International Series, 931, 107–116.
Niccolucci, F., & Hermon, S. (2015). Time, Chronology and Classification. In J. A. Barcelo & I. Bogdanovic (Eds.), Mathematics and Archaeology. CRC Press.
Orton, C. (1982). Mathematics in archaeology. Cambridge University Press Cambridge.
Orton, C., Hughes, M., & Hughes, M. (2013). Pottery in Archaeology. Cambridge University Press.
Pal, N. R., Bezdek, J. C., & Hathaway, R. J. (1996). Sequential Competitive Learning and the Fuzzy c-Means Clustering Algorithms. Neural Networks, 9(5), 787–796. https://doi.org/10.1016/0893-6080(95)00094-1
Pappis, C. P., & Siettos, C. I. (2014). Fuzzy reasoning. Search methodologies (pp. 519–556). Springer.
Parisotto, S., Leone, N., Schönlieb, C.-B., & Launaro, A. (2022). Unsupervised clustering of Roman potsherds via Variational Autoencoders. Journal of Archaeological Science, 142, 105598. https://doi.org/10.1016/j.jas.2022.105598
Pau, G., Fuchs, F., Sklyar, O., Boutros, M., & Huber, W. (2010). EBImage—An R package for image processing with applications to cellular phenotypes. Bioinformatics, 26(7), 979–981. https://doi.org/10.1093/bioinformatics/btq046
Pavlidis, T. (1978). A review of algorithms for shape analysis. Computer Graphics and Image Processing, 7(2), 243–258. https://doi.org/10.1016/0146-664X(78)90115-6
Pawlowicz, L. M., & Downum, C. E. (2021). Applications of deep learning to decorated ceramic typology and classification: A case study using Tusayan White Ware from Northeast Arizona. Journal of Archaeological Science, 130, 105375. https://doi.org/10.1016/j.jas.2021.105375
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/14786440109462720
Poblome, J. (1999). Sagalassos red slip ware: Typology and chronology. Brepols.
Poblome, J. (2016). The Potters of Ancient Sagalassos Revisited. In A. Wilson & M. Flohr (Eds.), Urban Craftsmen and Traders in the Roman World (pp. 377–404). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198748489.003.0017
Poblome, J., & Bes, P. (2018). This is how we do it. Methodology of pottery processing at Sagalassos. Rei Cretariae Romanae Favtorvm Acta, 45, 731–740.
Poblome, J., Bes, P., De Cupere, B., Lauwers, V., Kerlijne, R., Vionis, A., & Waelkens, M. (2010). Sic transit gloria mundi. Does it really? Wasting seventh century AD Sagalassos (SW Turkey). In S. Menchelli, S. Santoro, M. Pasquinucci, & G. Guiducci (Eds.), LRCW3. Late Roman Coarse Wares, Cooking Wares and Amphorae in the Mediterranean: Archaeology and archaeometry. Comparison between western and eastern Mediterranean (Vol. 2185, pp. 791–801). Archaeobooks; Oxford. https://doi.org/10.30861/9781407300986.
Pota, M., Esposito, M., & De Pietro, G. (2013). Transforming probability distributions into membership functions of fuzzy classes: A hypothesis test approach. Fuzzy Sets and Systems, 233, 52–73. https://doi.org/10.1016/j.fss.2013.03.013
Pota, M., Esposito, M., & De Pietro, G. (2018). Likelihood-fuzzy analysis: From data, through statistics, to interpretable fuzzy classifiers. International Journal of Approximate Reasoning, 93, 88–102. https://doi.org/10.1016/j.ijar.2017.10.022
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 26 July 2023.
Read, D. W. (2007). Artifact classification: A conceptual and methodological approach. Left Coast Press.
Rice, P. M. (2015). Pottery Analysis (2nd ed.). University of Chicago Press.
Rosch, E. (1975). Cognitive reference points. Cognitive Psychology, 7(4), 532–547. https://doi.org/10.1016/0010-0285(75)90021-3
Rovner, I. (1995). Complex measurements made easy: Morphometric analysis of artefacts using Expert Vision Systems. BAR INTERNATIONAL SERIES, 598, 7.
Royston, J. P. (1982a). Algorithm AS 181: The W Test for Normality. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31(2), 176–180. https://doi.org/10.2307/2347986.
Royston, J. P. (1982). An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples. Journal of the Royal Statistical Society Series C (Applied Statistics), 31(2), 115–124. https://doi.org/10.2307/2347973
RStudio Team. (2020). RStudio: Integrated development environment for R. RStudio, PBC. http://www.rstudio.com/. Accessed 26 July 2023.
Runz, C. D., Desjardin, E., Piantoni, F., & Herbin, M. (2007). Using fuzzy logic to manage uncertain multi-modal data in an archaeological GIS. Nternational Symposium on Spatial Data Quality-ISSDQ, 7, 4.
Saragusti, I., Karasik, A., Sharon, I., & Smilansky, U. (2005). Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis. Journal of Archaeological Science, 32(6), 841–853. https://doi.org/10.1016/j.jas.2005.01.002
Scott, R., & Whalen, T. (2000). Linguistic approximation of nonconvex membership functions using ‘...Except...’ or ‘...Or...’ PeachFuzz 2000. 19th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.00TH8500), 388–391. https://doi.org/10.1109/NAFIPS.2000.877458.
Smith, N. G., Karasik, A., Narayanan, T., Olson, E. S., Smilansky, U., & Levy, T. E. (2014). The pottery informatics query database: A new method for mathematic and quantitative analyses of large regional ceramic datasets. Journal of Archaeological Method and Theory, 21(1), 212–250. https://doi.org/10.1007/s10816-012-9148-1
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society, 63(2), 411–423.
Türkşen, I. B. (1991). Measurement of membership functions and their acquisition. Fuzzy Sets and Systems, 40(1), 5–38. https://doi.org/10.1016/0165-0114(91)90045-R
Tyukin, I., Sofeikov, K., Levesley, J., Gorban, A. N., Allison, P., & Cooper, N. J. (2018). Exploring automated pottery identification [Arch-I-Scan]. Internet Archaeology, 50. https://doi.org/10.11141/ia.50.11.
van der Enden, M., Poblome, J., & Bes, P. (2018). Sagalassian Mastoi in an Eastern Mediterranean Context. 9th Scientific Meeting on Hellenistic Pottery, 925–945.
Van Der Maaten, L., Lange, G., & Boon, P. (2005). Visualization and automatic typology construction of pottery profiles. Pattern Recognition Letters, 2614, 2174–2186.
Wang, L.-Y., & Marwick, B. (2020). Standardization of ceramic shape: A case study of Iron Age pottery from northeastern Taiwan. Journal of Archaeological Science: Reports, 33, 102554. https://doi.org/10.1016/j.jasrep.2020.102554
Webster, G. (1964). Romano-British coarse pottery: A students guide (Council for British Archaeology Research Report 6).
Wenstop, F. (1976). Deductive verbal models of organizations. International Journal of Man-Machine Studies, 8(3), 19.
Whalen, T., & Schott, B. (2001). Empirical comparison of techniques for linguistic approximation. Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), 1, 93–97. https://doi.org/10.1109/NAFIPS.2001.944233.
Whallon, R. (1972). A new approach to pottery typology. American Antiquity, 37(1), 13–33. https://doi.org/10.2307/278883
Wilcock, J. D. (1974). The facilities of the PLUTARCH system. Science and Archaeology, 11, 16–24.
Wilcock, J., & Shennan, S. (1975). The computer analysis of pottery shapes with application to bell beaker pottery. Proceedings Annual Conference on Computer Applications in Archaeology, 9.
Yandell, B. (2017). Practical data analysis for designed experiments. Routledge.
Zadeh, A. L. (1965). Fuzzy sets. Information. Control, 8(3), 338–353.
Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(1), 28–44. https://doi.org/10.1109/TSMC.1973.5408575.
Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 26.