Future software organizations – agile goals and roles
Tóm tắt
Digital transformation is rapidly causing major, even disruptive changes in many industries. Moreover, global developments like digital platforms (cloud) and IoT create fundamentally new connections at many levels between objects, organizations and people (systems-of-systems). These are by nature dynamic and often work in real time – further increasing the complexity. These systemic changes bring up new profound questions: What are those new software-intensive systems like? How are they created and developed? Which principles should guide such organizational design? Agile enterprises are by definition proficient with such capabilities. What solutions are the current scaled agile frameworks such as SAFe and LeSS proposing, and why? In this paper, we aim to recognize the design principles of future software organizations, and discuss existing experiences from various different organizations under transformations, and the insights gained. The purpose is to systematize this by proposing a competence development impact-mapping grid for new digitalization drivers and goals with potential solutions based on our agile software enterprise transformation experiences. Our research approach is based on the resource-based and competence-based views (RBV, CBV) of organizations. We point out how most decision-making in companies will be more and more software-related when companies focus on software. This has profound impacts on organizational designs, roles and competencies. Moreover, increasing data-intensification poses new demands for more efficient organizational data processing and effective knowledge utilization capabilities. However, decisive systematic transformations of companies bring new powerful tools for steering successfully under such new business conditions. We demonstrate this via real-life examples.
Tài liệu tham khảo
Meijer E, Kapoor V (2014) The Responsive Enterprise: Embracing the Hacker Way. CACM 57(12):38–43
Chew K (2015) Digital Organizations of the Future. In: Collin J, Hiekkanen K, Korhonen JJ, Halén M, Itälä T, Helenius M (eds) IT Leadership in Transition – The Impact of Digitalization on Finnish Organizations. Aalto University publication series SCIENCE + TECHNOLOGY 7/2015, Helsinki.
Accenture (2016) Technology Vision for Industrial & Automotive. https://www.accenture.com/us-en/insight-industrial-automotive-retooling-digital-advantage
Laanti M, Kettunen P (2017) Future software organization − Agile goals and roles. In: Futures of a Complex World Conf. Book of Abstracts, pp 20. https://futuresconference2017.files.wordpress.com/2017/06/fcw-boa1.pdf. Accessed 11 Dec 2017
Porter ME, Heppelmann JE (2014) How Smart, Connected Products Are Transforming Competition. HBR November
Taivalsaari A, Mikkonen T (2017) Roadmap to the Programmable World: Software Challenges in the IoT Era. IEEE Softw 34(1):72–80
Holmström Olsson H, Alahyari H, Bosch J (2012) Climbing the “Stairway to Heaven” – multiple-case study exploring barriers in the transition from agile development towards continuous deployment of software. In: Proc. 38th Euromicro Conference on Software Engineering and Advanced Applications pp 392–399
Walker D, Lloyd-Walker B (2016) Understanding Collaboration in Integrated Forms of Project Delivery by Taking a Risk-Uncertainty Based Perspective. Adm Sci 6(3). https://doi.org/10.3390/admsci6030010
Korhonen JJ (2015) IT in Enterprise Transformation. In: Collin J et al (eds) IT Leadership in Transition – The Impact of Digitalization on Finnish Organizations, pp 35–43. https://aaltodoc.aalto.fi/handle/123456789/16540. Accessed 08 Nov 2017
Version One (2017) 11th Annual State of Agile Report. http://stateofagile.versionone.com. Accessed 31 July 2017
Laanti M (2016) Miten ketteröitän ison organisaation? TIVI October. http://www.tivi.fi (in Finnish)
Hatch MJ (1997) Organization Theory. Oxford University Press, Oxford
Ahokangas P et al (2015) Need for Speed Strategic Research and Innovation Agenda. DIMECC Oy. http://www.n4s.fi/en/documents/articles/. Accessed 08 Nov 2017
Fitzgerald B, Stol K-J (2017) Continuous software engineering: A roadmap and agenda. J Syst Softw 123:176–189
Kettunen P, Ämmälä M, Sauvola T, Teppola S, Partanen J, Rontti S (2016) Towards Continuous Customer Satisfaction and Experience Management: A Measurement Framework Design Case in Wireless B2B Industry. In: Abrahamsson P et al (eds) Proc. PROFES. Springer, Berlin, pp 598–608
Kettunen P (2013) Bringing Total Quality in to Software Teams: A Frame for Higher Performance. In: Fitzgerald B et al (eds) Proc. LESS. Springer, Berlin, pp 48–64
Teppola S, Kettunen P, Matinlassi M, Partanen J (2016) Transparency Of Information To Improve Continuous Innovation Experimentation Performance. In: Proc. CINet Conf
Dingsøyr T, Fægri TE, Itkonen J (2014) What Is Large in Large-Scale? A Taxonomy of Scale for Agile Software Development. In: Jedlitschka A et al (eds) Proc. PROFES. Springer, Berlin, pp 273–276
Terho H, Suonsyrjä S, Systä K, Mikkonen T (2017) Understanding the Relations Between Iterative Cycles in Software Engineering. In: Proc. of the 50th Hawaii International Conference on System Sciences, pp 5900–5909. doi: https://doi.org/10.24251/HICSS.2017.710
Tyrväinen P, Saarikallio M, Aho T, Lehtonen T, Paukeri R (2015) Metrics framework for cycle-time reduction in software value creation. In: Oberhauser R, Lavazza L, Mannaert H, Clyde S (eds) Proc. of the Tenth International Conference on Software Engineering Advances (ICSEA). IARIA, pp 220–227
Aaltonen M (2010) Emergence and Design in Foresight Methods. EFP Brief No. 180. http://www.foresight-platform.eu/brief/efp-brief-no-180-emergence-and-design-in-foresight-methods/
Reinertsen DG (2009) The Principles of Product Development Flow: Second Generation Lean Product Development. Celeritas Publishing, Redondo Beach
Gallaugher JM, Wang Y-M (2002) Understanding network effects in software markets: Evidence from web server pricing. MIS Q 26(4):303–327
Katz ML, Shapiro C (1994) Systems Competition and Network Effects. J Econ Perspect 8(2):93–115
Brown SL, Eisenhardt KM (1998) Competing on the Edge: Strategy as Structured Chaos. HBS Press, Brighton
Laukkanen S (2012) Making Sense of Ambidexterity. Dissertation, Hanken School of Economics, Finland
Power B (2014) How GE Applies Lean Startup Practices. https://hbr.org/2014/04/how-ge-applies-lean-startup-practices. Accessed 31 July 2017
Kusek D, Leonhard G (2005) The Future of Music. Berklee Press, Boston
Day GS (1994) The Capabilities of Market-Driven Organizations. J Mark 58:37–52
DDI (2015) Digital Disruption of Industry. http://www.aka.fi/en/strategic-research-funding/programmes/programmes-20152017/disruptive-technologies-and-changing-institutions/ddi/. Accessed 31 July 2017
Collin J, Eloranta E, Holmström J (2009) How to design the right supply chain for your customers. Supply Chain Management: An International Journal 14(6):411–417
Porter ME, Heppelmann JE (2015) How Smart. Connected Products Are Transforming Companies, HBR October
Overby E, Bharadwaj A, Sambamurthy V (2006) Enterprise agility and the enabling role of information technology. Eur J Inf Syst 15:120–131
Tahvanainen AJ, Adriaens P, Kotiranta A (2016) Growing Pains of Industrial Renewal – Case Nordic Cleantech. ETLA (The Research Institute of the Finnish Economy) Reports 58. https://pub.etla.fi/ETLA-Raportit-Reports-58.pdf
Martinsuo M et al (2016) Future Industrial Services. Final Report, DIMECC Oy http://hightech.dimecc.com/results/final-report-futis-future-industrial-services
Paasivaara M (2017) Adopting SAFe to scale agile in a globally distributed organization. In: Marczak S et al (eds) Proc. ICGSE. ACM, New York, pp 36–40
Luhtala K, Korhonen JJ (2015) Case RAY: Playing It Digital. In: Collin J et al (eds) IT Leadership in Transition – The Impact of Digitalization on Finnish Organizations, pp 109–116. https://aaltodoc.aalto.fi/handle/123456789/16540. Accessed 08 Nov 2017
Kettunen P, Laanti M (2008) Combining Agile Software Projects and Large-scale Organizational Agility. Software Process: Improvement and Practice 13(2):183–193
Kettunen P (2007) Extending Software Project Agility with New Product Development Enterprise Agility. Software Process: Improvement and Practice 12(6):541–548