Triển vọng tương lai cho bệnh nhân tiểu đường mắc tăng huyết áp phổi trước và sau mao mạch

Federico Luongo1, Cristiano Miotti1, Gianmarco Scoccia1, Silvia Papa1, Giovanna Manzi1, Nadia Cedrone2, Federica Toto1, Claudia Malerba1, Gennaro Papa1, Annalisa Caputo1, Giulia Manguso1, Francesca Adamo1, Dario Vizza Carmine1, Roberto Badagliacca1
1Department of Clinical, Anesthesiological and Cardiovascular Sciences, I School of Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
2Internal Medicine Department, S. Pertini Hospital, Roma RM. Rome, Italy

Tóm tắt

Tăng huyết áp phổi là một hội chứng lâm sàng có thể bao gồm nhiều tình trạng lâm sàng khác nhau và có thể làm phức tạp hầu hết các bệnh lý tim mạch và hô hấp. Tăng huyết áp phổi thứ phát do bệnh lý tim trái là tình trạng lâm sàng phổ biến và chiếm hai phần ba tổng số các trường hợp. Bệnh tiểu đường loại 2, ảnh hưởng đến khoảng 422 triệu người trưởng thành trên toàn thế giới, đã nổi lên như một yếu tố nguy cơ độc lập cho sự phát triển của tăng huyết áp phổi ở bệnh nhân suy tim trái. Mặc dù việc chẩn đoán chính xác tăng huyết áp phổi thứ phát do bệnh lý tim trái yêu cầu có sự đánh giá huyết động xâm lấn qua thông tim phải, một số điểm số tích hợp các thông số lâm sàng và siêu âm tim đã được đề xuất để phân biệt các loại tăng huyết áp phổi trước và sau mao mạch. Dù có những bằng chứng mới nổi lên về cơ chế sinh bệnh lý đằng sau tác động của bệnh tiểu đường ở bệnh nhân bị tăng huyết áp phổi trước và/hoặc sau mao mạch, hiện vẫn chưa có loại thuốc cụ thể nào được phê duyệt cho nhóm bệnh nhân này. Trong vài năm qua, sự chú ý đã được tập trung vào vai trò của các loại thuốc chống tiểu đường ở bệnh nhân mắc tăng huyết áp phổi thứ phát do suy tim trái, cả trong các mô hình động vật và trong các thử nghiệm lâm sàng. Mục tiêu của bài viết tổng quan này là làm nổi bật những mối liên hệ đã xuất hiện trong những năm gần đây giữa bệnh tiểu đường và tăng huyết áp phổi trước và/hoặc sau mao mạch, cũng như những triển vọng mới cho các loại thuốc chống tiểu đường trong bối cảnh này.

Từ khóa

#tăng huyết áp phổi #bệnh tiểu đường #suy tim trái #thuốc chống tiểu đường #cơ chế sinh bệnh lý

Tài liệu tham khảo

Galiè N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Pediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119 Nazzareno Galiè, Vallerie V. McLaughlin, Lewis J. Rubin, and Gerald Simonneau. An overview of the 6th World Symposium on Pulmonary Hypertension. Eur Respir J 53(1):1802148. Published online 2019 Jan 24. https://doi.org/10.1183/13993003.02148-2018 Kabbach G, Mukherjee D (2018) Pulmonary hypertension secondary to left heart disease. Curr Vasc Pharmacol 16(6):555–560. https://doi.org/10.2174/1570161115666170913105424 Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41 Chisari G, C.E, Borzì AM, Chisari CG (2017) Amniotic membrane use in type 2 diabetes patients with chronic ulcers: microbiological evaluation and therapeutic benefits. Acta Med Mediterr 33:431–5 Cohen-Solal A, Beauvais F (2008) Logeart D J Card Fail. Heart failure and diabetes mellitus: epidemiology and management of an alarming association 14(7):615–625 Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Jüni P, Lettino M, Marx N, Mellbin LG, Östgren CJ, Rocca B, Roffi M, Sattar N, Seferović PM, Sousa-Uva M, Valensi P, Wheeler DC (2020) ESC Scientific Document Group. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486. Erratum in: Eur Heart J. 2020 Dec 1;41(45):4317. PMID: 31497854 Jansen SMA, Huis In 't Veld AE, Jacobs W, Grotjohan HP, Waskowsky M, van der Maten J, van der Weerdt A, Hoekstra R, Overbeek MJ, Mollema SA, Tolen PHCG, Hassan El Bouazzaoui LH, Vriend JWJ, Roorda JMM, de Nooijer R, van der Lee I, Voogel BAJ, Peels K, Macken T, Aerts JM, Vonk Noordegraaf A, Handoko ML, de Man FS, Bogaard HJ (2020) Noninvasive prediction of elevated wedge pressure in pulmonary hypertension patients without clear signs of left-sided heart disease: external validation of the OPTICS Risk Score. J Am Heart Assoc 9(15):e015992. https://doi.org/10.1161/JAHA.119.015992. Epub 2020 Jul 31. PMID: 32750312; PMCID: PMC7792270 Leung CC, Moondra V, Catherwood E, Andrus BW (2010) Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol 106(2):284–286. https://doi.org/10.1016/j.amjcard.2010.02.039.PMID:20599017 Opitz CF, Hoeper MM, Gibbs JS, Kaemmerer H, Pepke-Zaba J, Coghlan JG, Scelsi L, D’Alto M, Olsson KM, Ulrich S et al (2016) Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J Am Coll Cardiol 68:368–378. https://doi.org/10.1016/j.jacc.2016.05.047 Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang CC, Deo RC (2015) Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131(3):269–79. https://doi.org/10.1161/CIRCULATIONAHA.114.010637. Epub 2014 Nov 14 Robbins IM, Hemnes AR, Pugh ME, Brittain EL, Zhao DX, Piana RN, Fong PP, Newman JH (2014) High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension. Circ Heart Fail 7(1):116–22. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000468. Epub 2013 Dec 2 Doron A, Amnon E, Robert D, Andrew JB (2011) Relationship between reactive pulmonary hypertension and mortality in patients with acute decompensated heart failure. Circ Heart Fail 4(5):644–50. https://doi.org/10.1161/CIRCHEARTFAILURE.110.960864. Epub 2011 May 23 Mohammad-Reza M1, Mehrtash H, Mazen J (2005) The prevalence of pulmonary embolism and pulmonary hypertension in patients with type II diabetes mellitus. Chest 128(5):3568–71. https://doi.org/10.1378/chest.128.5.3568 Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR (2011) Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transplant 30(8): 904–911. Published online 2011 Apr 13. https://doi.org/10.1016/j.healun.2011.02.016 West J, Niswender KD, Johnson JA et al (2013) A potential role for insulin resistance in experimental pulmonary hypertension. Eur Respir J 41:861–871 Tufik RA, Anna RH, Emma KL, Andrew MG, Meng Xu, Quinn SW, Farber-Eger EH, Quanhu S, Yu S, Frank EH, John HN, Evan LB (2016) Clinical and biological insights into combined post-capillary and pre-capillary pulmonary hypertension. J Am Coll Cardiol 68(23):2525–2536. https://doi.org/10.1016/j.jacc.2016.09.942 Vachiery JL, Adir Y, Barbera JA, Champion H, Coghlan JG, Cottin V et al (2013) Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol 62(25 Suppl):D100–D108. https://doi.org/10.1016/j.jacc.2013.10.033.pmid:24355634 Vojtech M, Seok-Jae H, Grace L, Margaret MR, Barry AB (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35(48):3452–3462. Published online 2014 Jun 30. https://doi.org/10.1093/eurheartj/ehu193 Selma FM, Imad H, Omar FA, Hiroyuki T, Susan HK, Paul F, Véronique LR, Margaret MR (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130(25):2310–20. https://doi.org/10.1161/CIRCULATIONAHA.113.008461. Epub 2014 Nov 12 Guazzi M et al (2014) Pulmonary hypertension in heart failure preserved ejection fraction: prevalence, pathophysiology, and clinical perspectives. Circ Heart Fail 7:367–377 Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, Roger VL, Redfield MM (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320 Vanderpool RR, Saul M, Nouraie M, Gladwin MT, Simon MA (2018) Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. JAMA Cardiol 3:298–306 Dalos D, Mascherbauer J, Zotter-Tufaro C, Duca F, Kammerlander AA, Aschauer S, Bonderman D (2016) Functional status, pulmonary artery pressure, and clinical outcomes in heart failure with preserved ejection fraction. J Am Coll Cardiol 68:189–199 Santas E, de la Espriella-Juan R, Mollar A, Valero E, Minana G, Sanchis J, Chorro FJ, Nunez J (2017) Echocardiographic pulmonary artery pressure estimation and heart failure rehospitalization burden in patients with acute heart failure. Int J Cardiol 241:407–410 Gorter TM, Hoendermis ES, van Veldhuisen DJ et al (2016) Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail 18:1472–1487 Rosenkranz S, Lang IM, Blindt R, Bonderman D, Bruch L, Diller GP, Felgendreher R, Gerges C, Hohenforst-Schmidt W, Holt S, Jung C (2018) Pulmonary hypertension associated with left heart disease: updated recommendations of the Cologne Consensus Conference 2018. Int J Cardiol 272S:53–62. https://doi.org/10.1016/j.ijcard.2018.08.080. Epub 2018 Aug 27 Pieske B, Wachter R (2008) Impact of diabetes and hypertension on the heart. Curr Opin Cardiol 23:340–349. https://doi.org/10.1097/HCO.0b013e3283031ab3 Willemsen S, Hartog JW, Hummel YM, van Ruijven MH, van der Horst IC, van Veldhuisen DJ et al (2011) Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. Eur J Heart Fail 13:76–82. https://doi.org/10.1093/eurjhf/hfq168 Van Heerebeek L, Somsen A, Paulus WJ (2009) The failing diabetic heart: focus on diastolic left ventricular dysfunction. Curr Diab Rep 9:79–86. https://doi.org/10.1007/s11892-009-0014-9 Borbely A, Papp Z, Edes I, Paulus WJ (2009) Molecular determinants of heart failure with normal left ventricular ejection fraction. Pharmacol Rep 61:139–145. https://doi.org/10.1016/S1734-1140(09)70016-7 Milsom AB, Jones CJ, Goodfellow J, Frenneaux MP, Peters JR, James PE (2002) Abnormal metabolic fate of nitric oxide in Type I diabetes mellitus. Diabetologia 45:1515–1522. https://doi.org/10.1007/s00125-002-0956-9 Bhedi CD, Nasirova S, Toksoz D, Warburton RR, Morine KJ, Kapur NK, Galper JB, Preston IR, Hill NS, Fanburg BL, Penumatsa KC (2020) Glycolysis regulated transglutaminase 2 activation in cardiopulmonary fibrogenic remodeling. FASEB J. Author manuscript; available in PMC 2021 Jan 1. Published in final edited form as: FASEB J 34(1): 930–944. Published online 2019 Nov 28. https://doi.org/10.1096/fj.201902155R Ussavarungsi K, Thomas CS, Burger CD (2015) Prevalence of metabolic syndrome in patients with pulmonary hypertension. Clin Respir J 00:000–000. https://doi.org/10.1111/crj.12406 Robbins IM, Newman JH, Johnson RF et al (2009) Association of the metabolic syndrome with pulmonary venous hypertension. Chest 136:31–36 Richter SE, Roberts KE, Preston IR, Hill NS (2016) A simple derived prediction score for the identification of an elevated pulmonary artery wedge pressure using precatheterization clinical data in patients referred to a pulmonary hypertension center. Chest 1261–1268 Marco G, Valentina L (2016) Pulmonary hypertension in heart failure patients: pathophysiology and prognostic implication. Pathophysiology of Myocardial Failure (I Anand and M Patarroyo-Aponte, Section Editors). Published: 17 November 2016 Thenappan T, Shah SJ, Gomberg-Maitland M et al (2011) Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Heart Fail 4:257–265 Gopal DM, Santhanakrishnan R, Wang Y-C et al (2015) Impaired right ventricular hemodynamics indicate preclinical pulmonary hypertension in patients with metabolic syndrome. J Am Heart Assoc 4: e001597 Wong CY, O’Moore-Sullivan T, Leano R et al (2006) Association of subclinical right ventricular dysfunction with obesity. J Am Coll Cardiol 47:611–616 Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR (2011) Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transplant 30:904–911 Poms AD, Turner M, Farber HW, Meltzer LA, McGoon MD (2013) Comorbid conditions and outcomes in patients with pulmonary arterial hypertension: a REVEAL registry analysis. Chest 144:169–176 Javier B, González‐MansillaTeresa Mombiela A, Fernández AI, Martínez‐Legazpi P, Yotti R, García‐Orta R, Sánchez‐Fernández PL , Castaño M, Segovia‐Cubero J, Escribano‐Subias P, San Román LA, Borrás X, Alonso‐Gómez A, Botas J, Crespo‐Leiro MG, Velasco S, Bayés‐Genís A, López A, Muñoz‐Aguilera R, Jiménez‐Navarro M, González‐Juanatey JR, Evangelista A, Elízaga J, Martín‐Moreiras J, González‐Santos JM, Moreno‐Escobar E, Fernández‐Avilés F, the SIOVAC (“Sildenafil for improving outcomes after VAlvular Correction”) (2020) Investigators * Persistent pulmonary hypertension in corrected valvular heart disease: hemodynamic insights and long‐term survival. J Am Heart Assoc 10(2):e019949. Published online 2021 Jan 5. https://doi.org/10.1161/JAHA.120.019949; Ibe T, Wada H, Sakakura K, Ugata Y, Maki H, Yamamoto K, Seguchi M, Taniguchi Y, Jinnouchi H, Momomura SI, Fujita H (2021) Combined pre- and post-capillary pulmonary hypertension: the clinical implications for patients with heart failure. PLoS ONE 16(3):e0247987. https://doi.org/10.1371/journal.pone.0247987.eCollection2021 Chatterjee NA, Steiner J, Lewis GD (2014) It is time to look at heart failure with preserved ejection fraction from the right side. Circulation 130:2272–2277 Lam CSP, Roger VL, Rodeheffer RJ et al (2009) Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol 53:1119–1126 Mohammed S (2020) Al-Omary 1 2, Stuart Sugito 1, Andrew J Boyle 1 2, Aaron L Sverdlov # 1 2, Nicholas J Collins. Pulmonary hypertension due to left heart disease: diagnosis, pathophysiology, and therapy 75(6):1397–1408. https://doi.org/10.1161/HYPERTENSIONAHA.119.14330 (Epub 2020 Apr 27) D’Alto M, Romeo E, Argiento P, Motoji Y, Correra A, Di Marco GM, Iacono AM, Barracano R, D’Andrea A, Rea G, Sarubbi B, Russo MG, Naeije R (2017) Clinical relevance of fluid challenge in patients evaluated for pulmonary hypertension. Chest 151:119–126 Robbins IM, Hemnes AR, Pugh ME, Brittain EL, Zhao DX, Piana RN, Fong PP, Newman JH (2014) High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension. Circ Heart Fail 7:116–122 Assad TR, Maron BA, Robbins IM, Xu M, Huang S, Harrell FE, Farber-Eger EH, Wells QS, Choudhary G, Hemnes AR, Brittain EL (2017) Prognostic effect and longitudinal hemodynamic assessment of borderline pulmonary hypertension. JAMA Cardiol 2:1361 Bonderman D, Wexberg P, Martischnig AM, Heinzl H, Lang MB, Sadushi R, Skoro‐Sajer N, Lang IM (2011) A noninvasive algorithm to exclude pre‐capillary pulmonary hypertension. Eur Respir J 1096–1103 Opotowsky AR, Ojeda J, Rogers F, Prasanna V, Clair M, Moko L, Vaidya A, Afilalo J, Forfia PR (2011) A simple echocardiographic prediction rule for hemodynamics in pulmonary hypertension. Circ Cardiovasc Imaging 5(6):765–75. https://doi.org/10.1161/CIRCIMAGING.112.976654. Epub 2012 Aug 22. PMID: 22914595; PMCID: PMC3505751 D’Alto M, Romeo E, Argiento P, Pavelescu A, D’Andrea A, Di Marco GM, Mattera Iacono A, Sarubbi B, Rea G, Bossone E, Russo MG, Naeije R (2017) A simple echocardiographic score for the diagnosis of pulmonary vascular disease in heart failure. J Cardiovasc Med (Hagerstown) 18(4):237–243. https://doi.org/10.2459/JCM.0000000000000485.PMID:27841823 Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, Marzec L, Palevsky HI, Ferrari VA, Forfia PR (2011) Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med 183(2):268–276 Miotti C, Papa S, Manzi G, Scoccia G, Luongo F, Toto F, Malerba C, Cedrone N, Sciomer S, Ciciarello F, Fedele F, Vizza CD, Badagliacca R (2021) The growing role of echocardiography in pulmonary arterial hypertension risk stratification: the missing piece. J Clin Med 10(4):619. https://doi.org/10.3390/jcm10040619.PMID:33561999;PMCID:PMC7915820 Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S (2011) Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 139(5):988–993 Gerges M, Gerges C, Pistritto AMA, Lang MBM, Trip P, Jakowitsch J, Binder T, Lang IM (2015) Pulmonary hypertension in heart failure: epidemiology, right ventricular function and survival. Am J Respir Crit Care Med 192(10):1234–1246 Fukushima A, Lopaschuk GA (2016) Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids Volume 1861, Issue 10, October 2016, Pages 1525–1534 Velez M, Kohli S, Sabbah HN (2014) Animal models of insulin resistance and heart failure. Heart Fail Rev 19:1–13. https://doi.org/10.1007/s10741-013-9387-6 Tremblay-Gravel M, Fortier A, Baron C, David C, Mehanna C, Ducharme A, Hussin J, Hu Q, Jean-Claude T, Rosiers CD, Dupuis J, Ruiz M (2021) Long-chain acylcarnitines and monounsaturated fatty acids discriminate heart failure patients according to pulmonary hypertension status. Metabolites 11(4):196. Published online 2021 Mar 26. https://doi.org/10.3390/metabo11040196 Nunoda SI, Genda A, Sugihara N, Nakayama A, Mizuno S, Takeda R (1985) Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessel 1(1):43–47; 25 Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339(4):229–234. https://doi.org/10.1056/NEJM199807233390404 Grinnan D, Farr G, Fox A, Sweeney L (2016) The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension. J Diabetes Res 2016:2481659. https://doi.org/10.1155/2016/2481659. Epub 2016 Jun 8. PMID: 27376089; PMCID: PMC4916286 Whitaker ME, Nair V, Sinari S, Dherange P, Natarajan B, Trutter L, Brittain EL, Hemnes AR, Austin E, Patel K, Black SM, Garcia JGN, Yuan JX, Vanderpool R, Rischard F, Makino A, Bedrick EJ, Desai AA (2018) Diabetes mellitus associates with increased right ventricular afterload and remodeling in pulmonary arterial hypertension. Am J Med 131:702.e7-702.e13 Hua H, Goldberg HJ, Fantus IG (2001) Whiteside High glucose-enhanced mesangial cell extracellular signal-regulated protein kinase activation and alpha1(IV) collagen expression in response to endothelin-1: role of specific protein kinase C isozymes. CI Diabetes 50(10):2376–83 Gesualdo L, Ranieri E, Grandaliano G, Schena FP (1996) Am J Pathol High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. Di Paolo S 149(6):2095–106 Riccardo Pofi, Elisa Giannetta, Nicola Galea, Marco Francone, Federica Campolo, Federica Barbagallo, Daniele Gianfrilli, Mary Anna Venneri, Tiziana Filardi, Cristiano Cristini, Gabriele Antonini, Roberto Badagliacca, Giacomo Frati, Andrea Lenzi, Iacopo Carbone, Andrea M Isidori. Diabetic cardiomiopathy progression is triggered by mir122–5p and involves extracellular matrix: a 5-year prospective study. JACC Cardiovasc Imaging. 2021 Jun;14(6):1130–1142. https://doi.org/10.1016/j.jcmg.2020.10.009. Epub 2020 Nov 18; Arnold N, Koppula PR, Gul R, Luck C (2014) Pulakat Regulation of cardiac expression of the diabetic marker microRNA miR-29. LPLoS One 9(7):e103284 Madonna R, Cocco N (2016) Novel strategies in the treatment of pulmonary arterial hypertension. Curr Drug Targets 17(7):817–823. https://doi.org/10.2174/1389450116666150722140424.PMID:26201488 Madonna R, Morganti R, Radico F, Vitulli P, Mascellanti M, Amerio P, De Caterina R (2020) Isolated exercise-induced pulmonary hypertension associates with higher cardiovascular risk in scleroderma patients. J Clin Med 9(6):1910. https://doi.org/10.3390/jcm9061910.PMID:32570917;PMCID:PMC7357136 Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132(6):1906–12. https://doi.org/10.1378/chest.07-1246. Epub 2007 Nov 7. PMID: 17989161 Madonna R, Bonitatibus G, Vitulli P, Pierdomenico SD, Galie N, De Caterina R (2020) Association of the European Society of cardiology echocardiographic probability grading for pulmonary hypertension with short and mid-term clinical outcomes after heart valve surgery. Vasc Pharmacol 125–126:106648 Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820. https://doi.org/10.1038/414813a Kizub IV, Klymenko KI, Soloviev AI (2014) Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol 174(2):230–242. https://doi.org/10.1016/j.ijcard.2014.04.117 Kruszelnicka O (2014) Nitric oxide vs insulin secretion, action and clearance. Diabetologia 57(1):257–258. https://doi.org/10.1007/s00125-013-3082-y Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Flores-Hernandez J, Monjaraz E, Cogolludo A, Perez-Vizcaino F (2008) Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. Am J Physiol Lung Cell Mol Physiol 295(5):L727–32 Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, Creager MA (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97(17):1695–1701 Tomohiko Y, Katsuhiro M, Seijirow G, Danfu M, Kazumi S, Pitipat K, Ryosuke N, Akiko U, Kazuhiko S, Ryou T (2020) Metformin prevents the development of monocrotaline-induced pulmonary hypertension by decreasing serum levels of big endothelin-1. Exp Ther Med 20(6):149. https://doi.org/10.3892/etm.2020.9278. Epub 2020 Wang L, Halliday G (2020) Joshua R Huot, Taijyu Satoh, Jeffrey J Baust, Amanda Fisher, Todd Cook, Jian Hu, Theodore Avolio, Dmitry A Goncharov, Yang Bai, Rebecca R Vanderpool, Robert V Considine, Andrea Bonetto, Jiangning Tan, Timothy N Bachman, Andrea Sebastiani, Charles F McTiernan, Ana L Mora, Roberto F Machado, Elena A Goncharova, Mark T Gladwin, Yen-Chun Lai Treatment with treprostinil and metformin normalizes hyperglycemia and improves cardiac function in pulmonary hypertension associated with heart failure with preserved ejection fraction. Arterioscler Thromb Vasc Biol 40(6):1543–1558. https://doi.org/10.1161/ATVBAHA.119.313883 (Epub 2020 Apr 9) Julie D, Xiaomei M, Leif N, Yusen L, Bernadette C (2020) Nitric oxide activates AMPK by modulating PDE3A in human pulmonary artery smooth muscle cells. Physiol Rep 8(17):e14559. Published online 2020 Sep 10. https://doi.org/10.14814/phy2.14559 Ranchoux B, Nadeau V, Bourgeois A, Provencher S, Tremblay É, Omura J, Coté N, Abu-Alhayja’a R, Dumais V, Nachbar RT, Tastet L (2019) Metabolic syndrome exacerbates pulmonary hypertension due to left heart disease. Circ Res 125(4):449–466. https://doi.org/10.1161/CIRCRESAHA.118.314555. Epub 2019 Jun 3 Wu W, Shi F, Liu D et al (2017) Enhancing natriuretic peptide signaling in adipose tissue, but not in muscle, protects against diet-induced obesity and insulin resistance. Sci Signal 10:eaam6870 Agrawal V, Fortune N, Yu S, Fuentes J, Shi F, Nichols D, Gleaves L, Poovey E, Wang TJ, Brittain EL, Collins S (2019) Natriuretic peptide receptor C contributes to disproportionate right ventricular hypertrophy in a rodent model of obesity-induced heart failure with preserved ejection fraction with pulmonary hypertension. Pulm Circ 9(4): 2045894019878599. Published online 2019 Dec 18. https://doi.org/10.1177/2045894019895452 Baandrup JD, Markvardsen LH, Peters CD, Schou UK, Jensen JL, Magnusson NE, Orntoft TF, Kruhoffer M, Simonsen U (2011) Pressure load: the main factor for altered gene expression in right ventricular hypertrophy in chronic hypoxic rats. PLoS One 6:e15859 Yuanyuan Wu, Liu Lu, Zhang Y, Wang G, Han D, Ke R, Li S, Feng W, Li M (2014) Activation of AMPK inhibits pulmonary arterial smooth muscle cells proliferation. Exp Lung Res 40(5):251–258. https://doi.org/10.3109/01902148.2014.913092 Lai YC, Tabima DM, Dube JJ, Hughan KS, Vanderpool RR, Goncharov DA, St Croix CM, Garcia-Ocaña A, Goncharova EA, Tofovic SP et al (2016) SIRT3-AMP-activated protein kinase activation by nitrite and metformin improves hyperglycemia and normalizes pulmonary hypertension associated with heart failure with preserved ejection fraction. Circulation 133:717–731. https://doi.org/10.1161/CIRCULATIONAHA.115.018935 Wang L, Halliday G, Huot JR, Satoh T, Baust JJ, Fisher A, Cook T, Jian Hu, Avolio T, Goncharov DA, Bai Y, Vanderpool RR, Considine RV, Bonetto A, Tan J, Bachman TN, Sebastiani A, McTiernan CF, Mora AL, Machado RF, Goncharova EA, Gladwin MT, Lai Y-C (2020) Treatment with treprostinil and metformin normalizes hyperglycemia and improves cardiac function in pulmonary hypertension associated with heart failure with preserved ejection fraction. Arterioscler Thromb Vasc Biol 40(6):1543–1558. https://doi.org/10.1161/ATVBAHA.119.313883 (Epub 2020 Apr 9) Brittain EL, Talati M, Fortune N, Agrawal V, Meoli DF, West J, Hemnes AR (2019) Adverse physiologic effects of Western diet on right ventricular structure and function: role of lipid accumulation and metabolic therapy. Pulm Circ 9(1):2045894018817741. Epub 2018 Nov 19; 90 Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128 Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N et al (2018) Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation 137:323–334 Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A et al (2018) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:2117–2128 Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, Espadero RM, Woerle HJ, Broedl UC, Johansen OE (2015) SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 12:90–100. https://doi.org/10.1177/1479164114559852Crossref.PubMed Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925.Crossref.PubMed Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S et al (2019) CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380:2295–2306. https://doi.org/10.1056/NEJMoa1811744 Crossref. PubMed Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M et al (2020) EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383:1413–1424. https://doi.org/10.1056/NEJMoa2022190 Crossref. PubMed McMurray JJ, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M et al (2019) for the DAPA-HF Trial Committees and Investigators. Dapaglifozin in patients with heart failure and reduced ejection fraction. Clinical Trial N Engl J Med 381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303. Epub 2019 Sep 19 Seo Y, Yamamoto M, Machino-Ohtsuka T, Aonuma K (2018) Effects and safety of sodium glucose cotransporter 2 inhibitors in diabetes patients with drug-refractory advanced heart failure. Circ J 82:1959–1962 Scheen AJ (2019) Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr Cardiol Rep 21:70 Uthman L, Homayr A, Juni RP, Spin EL, Kerindongo R, Boomsma M, Hollmann MW, Preckel B, Koolwijk P, van Hinsbergh VWM et al (2019) Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem 53:865–886. https://doi.org/10.33594/000000178 Madonna R (2021) Exploring the mechanisms of action of gliflozines in heart failure and possible implications in pulmonary hypertension. Vascul Pharmacol 138:106839. https://doi.org/10.1016/j.vph.2021.106839. Epub 2021 Jan 30. PMID: 33524548 Kayano H, Koba S, Hirano T, Matsui T, Fukuoka H, Tsuijita H, Tsukamoto S, Hayashi T, Toshida T, Watanabe N, Hamazaki Y, Geshi E, Murakami M, Aihara K, Kaneko K, Yamada H, Kobayashi Y, Shinke T (2020) Dapagliflozin influences ventricular hemodynamics and exercise-induced pulmonary hypertension in type 2 diabetes patients- a randomized controlled trial. Circ J 84(10):1807–1817. https://doi.org/10.1253/circj.CJ-20-0341 (Epub 2020 Sep 12) Nassif ME, Qintar M, Windsor SL, Jermyn R, Shavelle DM, Tang F, Lamba S, Bhatt K, Brush J, Civitello A, Gordon R (2021) Empagliflozin effects on pulmonary artery pressure in patients with heart failure. Originally published 8 Feb 2021, 143:1673–1686. https://doi.org/10.1161/CIRCULATIONAHA.120.052503Circulation Michael Hart C (2008) The role of PPARγ in pulmonary vascular disease. J Investig Med 56(2):518–521 Matsuda Y, Hoshikawa Y, Ameshima S, Suzuki S, Okada Y, Tabata T, Sugawara T, Matsumura Y, Kondo T (2005) Effects of peroxisome proliferator-activated receptor gamma ligands on monocrotaline-induced pulmonary hypertension in rats. Nihon Kokyuki Gakkai Zasshi 43(5):283–8 Crossno JT Jr, Garat CV, Reusch JE, Morris KG, Dempsey EC, McMurtry IF, Stenmark KR, Klemm DJ (2007) Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 292(4):L885–L897 Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, Sheikh AY, Suen RS, Stewart DJ, Rabinovitch M (2007) Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation 115(10):1275–1284 Honda J, Kimura T, Sakai S, Maruyama H, Tajiri K, Murakoshi N, Homma S, Miyauchi T, Aonuma K (2018) The glucagon-like peptide-1 receptor agonist liraglutide improves hypoxia-induced pulmonary hypertension in mice partly via normalization of reduced ETB receptor expression. Physiol Res 67(Suppl 1):S175–S184. https://doi.org/10.33549/physiolres.933822 Wang J, Yu M, Xu J, Cheng Y, Li X, Wei G, Wang H, Kong H, Xie W (2019) Glucagon-like peptide-1 (GLP-1) mediates the protective effects of dipeptidyl peptidase IV inhibition on pulmonary hypertension. J Biomed Sci 26:6. Published online 2019 Jan 12. https://doi.org/10.1186/s12929-019-0496-y Lee MY, Tsai KB, Hsu JH, Shin SJ, Wu JR, Yeh JL (2016) Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways. Sci Rep 6:31788 Cooper TJ, Guazzi M, Al-Mohammad A, Amir O, Bengal T, Cleland JG, Dickstein K (2013) Sildenafil in Heart failure (SilHF). An investigator-initiated multinational randomized controlled clinical trial: rationale and design. Eur J Heart Fail 15(1):119–22. https://doi.org/10.1093/eurjhf/hfs152. Epub 2012 Oct 24. PMID: 23097067 Wu N, Yang G (2018) Effect of sildenafil on pulmonary hypertension associated with left heart failure. J Biol Regul Homeost Agents 32(3):577–581. PMID: 29921383 Barnes H, Brown Z, Burns A, Williams T (2019) Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst Rev 1(1):CD012621. https://doi.org/10.1002/14651858.CD012621.pub2. PMID: 30701543; PMCID: PMC6354064 Schäfer A, Fraccarollo D, Pförtsch S et al (2008) Improvement of vascular function by acute and chronic treatment with the PDE-5 inhibitor Sildenafil in experimental diabetes mellitus. Br J Pharmacol 153(5):886–893. https://doi.org/10.1038/sj.bjp.0707459 Bermejo J, Yotti R, García-Orta R et al (2018) Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur Heart J 39(15):1255–1264. https://doi.org/10.1093/eurheartj/ehx700 Omarjee L, Fontaine C, Mahe G, Jaquinandi V (2017) Improvement of peripheral artery disease with Sildenafil and Bosentan combined therapy in a patient with limited cutaneous systemic sclerosis. Medicine 96(25). https://doi.org/10.1097/MD.0000000000006988.e6988 Zimmermann LM, Baptista MS, Tardivo JP, Pinhal MA (2020) Type II diabetes patients under sildenafil citrate: case series showing benefits and a side effect. Case Rep Med 9(2020):4065452. https://doi.org/10.1155/2020/4065452. PMID: 32454833; PMCID: PMC7238323