Future Trends in District Heating Development

Current Sustainable/Renewable Energy Reports - Tập 5 Số 2 - Trang 172-180 - 2018
Tymofii Tereshchenko1, Nataša Nord1
1Department of Energy and Process Technology, Norwegian University of Science and Technology (NTNU), Kolbjørn Hejes vei 1 B, 7491, Trondheim, Norway

Tóm tắt

Từ khóa


Tài liệu tham khảo

Frederiksen S, Werner S. District heating and cooling. Studentlitteratur: Lund; 2013.

•• Lund H, Werner S, Wiltshire R, Svendsen S, Thorsen JE, Hvelplund F, et al. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy. 2014;68:1–11. https://doi.org/10.1016/j.energy.2014.02.089 . The paper provides full definition of 4th generation of DH technology including the consepts of Smart Energy and Smart Thermal Grids. Very informative article.

Rismanchi B. District energy network (DEN), current global status and future development. Renew Sust Energ Rev. 2017;75:571–9. https://doi.org/10.1016/j.rser.2016.11.025 .

•• Lund H, Duic N, Østergaard PA, Mathiesen BV. Smart energy systems and 4th generation district heating. Energy. 2016;110:1–4. https://doi.org/10.1016/j.energy.2016.07.105 . This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th generation DH.

Sayegh MA, Danielewicz J, Nannou T, Miniewicz M, Jadwiszczak P, Piekarska K, et al. Trends of European research and development in district heating technologies. Renew Sust Energ Rev. 2017;68:1183–92. https://doi.org/10.1016/j.rser.2016.02.023 .

H Lund SW, Wiltshire R, Svendsen S, Thorsen JE, Hvelplund F, Mathiesen BV. 4th Generation District heating (4GDH). Energy. 2014;68:1–11. https://doi.org/10.1016/j.energy.2014.02.089 .

Pirouti M, Bagdanavicius A, Ekanayake J, Wu J, Jenkins N. Energy consumption and economic analyses of a district heating network. Energy. 2013;57:149–59. https://doi.org/10.1016/j.energy.2013.01.065 .

European Commission. Energy 2020—a strategy for competitive saseCftCttEP, the council, the European economic and social committee and the committee of the regions. 2015, 1, pp 1689–1699. https://doi.org/10.1017/CBO9781107415324.004 , Summary for Policymakers.

Werner S. District heating and cooling in Sweden. Energy. 2017;126:419–29. https://doi.org/10.1016/j.energy.2017.03.052 .

Werner S. International review of district heating and cooling. Energy. 2017;137:617–31. https://doi.org/10.1016/j.energy.2017.04.045 .

European Parliament and Council. Directive 2010/31/EU of the European parliament and of the council of 19 may 2010 on the energy performance of buildings. Brussels; 2010.

Paiho S, Reda F. Towards next generation district heating in Finland. Renew Sust Energ Rev. 2016;65:915–24.

Blomsterberg Å, Buvik K, Holopainen R, Mortensen A, Peuhkuri P, Svennberg K. Very NorthPass – Low-Energy House Concepts in North European Countries. IEE project number: 08/480/S12.528386 - Promotion of the Very Low-Energy House Concept to the North European Building market, 2012.

Harrestrup M, Svendsen S. Changes in heat load profile of typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating. Int J Sustain Energy. 2015;34(3–4):232–47.

Sartori I, Wachenfeldt BJ, Hestnes AG. Energy demand in the Norwegian building stock: scenarios on potential reduction. Energy Policy. 2009;37(5):1614–27. https://doi.org/10.1016/j.enpol.2008.12.031 .

Werner S and Olsson Ingvarsson L. Building mass used as short term heat storage. In Presented at the 11th International Symposium on District Heating and Cooling, august 31 to september 2, 2008. Reykjavik, Iceland, 2008.

Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández A. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sust Energ Rev. 2011;15(3):1675–95.

Hagentoft C-E, Kalagasidis AS. Effect smart solutions for district heating networks based on energy storage in buildings. Impact on indoor temperatures. Energy Procedia. 2015;78:2244–9. https://doi.org/10.1016/j.egypro.2015.11.346 .

Kensby J, Trüschel A, Dalenbäck J-O. Potential of residential buildings as thermal energy storage in district heating systems—results from a pilot test. Appl Energy. 2015;137:773–81. https://doi.org/10.1016/j.apenergy.2014.07.026 .

Heier J, Bales C, Martin V. Combining thermal energy storage with buildings—a review. Renew Sust Energ Rev. 2015;42:1305–25. https://doi.org/10.1016/j.rser.2014.11.031 .

Parameshwaran R, Kalaiselvam S, Harikrishnan S, Elayaperumal A. Sustainable thermal energy storage technologies for buildings: a review. Renew Sust Energ Rev. 2012;16(5):2394–433. https://doi.org/10.1016/j.rser.2012.01.058 .

Thomsen PD, Overbye PM. Energy storage for district energy systems. In: 7 - energy storage for district energy systems A2 -Wiltshire, Robin. Advanced District heating and cooling (DHC) systems. Oxford: Woodhead Publishing; 2016. p. 145–66.

Guelpa E, Barbero G, Sciacovelli A, Verda V. Peak-shaving in district heating systems through optimal management of the thermal request of buildings. Energy. 2017;137:706–14. https://doi.org/10.1016/j.energy.2017.06.107 .

Alva G, Lin Y, Fang G. An overview of thermal energy storage systems. Energy. 2018;144:341–78. https://doi.org/10.1016/j.energy.2017.12.037 .

Li H, Wang SJ. Load Management in District Heating Operation. Energy Procedia. 2015;75:1202–7. https://doi.org/10.1016/j.egypro.2015.07.155 .

Khabdullin A, Khabdullina Z, Khabdullina G, Lauka D, Blumberga D. Demand response analysis methodology in district heating system. Energy Procedia. 2017;128:539–43. https://doi.org/10.1016/j.egypro.2017.09.004 .

• Vanhoudt D, Claessens B, Desmedt J, Johansson C. Status of the horizon 2020 storm project. Energy Procedia. 2017;116:170–9. https://doi.org/10.1016/j.egypro.2017.05.065 . This is ongoing project that aimed to find new control meghods and strategies for operation in LTDH networks. The solutions to avoid peak loads should be investigated.

Ahn J, Cho S. Development of an intelligent building controller to mitigate indoor thermal dissatisfaction and peak energy demands in a district heating system. Build Environ. 2017;124:57–68. https://doi.org/10.1016/j.buildenv.2017.07.040 .

Gao L, Cui X, Ni J, Lei W, Huang T, Bai C, et al. Technologies in Smart District Heating System. Energy Procedia. 2017;142:1829–34. https://doi.org/10.1016/j.egypro.2017.12.571 .

Toffanin D. Generation of customer load profiles based on smart-metering time series, building-level data and aggregated measurements. M.S. thesis, Swiss Federal Institute of Technology. Zurich; 2016.

Kipping A, Trømborg E. Modeling aggregate hourly energy consumption in a regional building stock. Energies. 2017;11(1):78.

Weissmann C, Hong T, Graubner C-A. Analysis of heating load diversity in German residential districts and implications for the application in district heating systems. Energy and Buildings. 2017;139:302–13. https://doi.org/10.1016/j.enbuild.2016.12.096 .

Østergaard D, Svendsen S. Space heating with ultra-low-temperature district heating –a case study of four single-family houses from the 1980s. Energy Procedia. 2017;116:226–35. https://doi.org/10.1016/j.egypro.2017.05.070 .

Olsen PK, Christiansen CH, Hofmeister M, Svendsen S, Thorsen J-E, Gudmundsson O. Guidelines for low-temperature district heating. “EUDP 2010-II: Full-scale demonstration of low-temperature district heating in existing buildings”, project journal No. 64010-0479. Denmark; 2014.

Hesaraki A, Ploskic A, Holmberg S. Integrating low-temperature heating systems into energy efficient buildings. Energy Procedia. 2015;78:3043–8. https://doi.org/10.1016/j.egypro.2015.11.720 .

A.D. Rosa HL, S. Svendsen, S. Werner, U. Persson, K. Ruehling, C. Felsmann, M. Crane, R. Burzynski, C. Bevilacqua, . Annex X Final report | Toward 4th Generation District Heating: Experience and Potential of Low-Temperature District Heating. IEA DHC|CHP; 2014.

Østergaard DS, Svendsen S. Replacing critical radiators to increase the potential to use low-temperature district heating – a case study of 4 Danish single-family houses from the 1930s. Energy. 2016;110:75–84. https://doi.org/10.1016/j.energy.2016.03.140 .

Østergaard DS, Svendsen S. Case study of low-temperature heating in an existing single-family house—a test of methods for simulation of heating system temperatures. Energ Buildings. 2016;126:535–44. https://doi.org/10.1016/j.enbuild.2016.05.042 .

Østergaard DS, Svendsen S. Theoretical overview of heating power and necessary heating supply temperatures in typical Danish single-family houses from the 1900s. Energ Buildings. 2016;126:375–83. https://doi.org/10.1016/j.enbuild.2016.05.034 .

Brand M, Svendsen S. Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment. Energy 2013;62(0):311–319. https://doi.org/10.1016/j.energy.2013.09.027 .

Imran M, Usman M, Im YH, Park BS. The feasibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks. Energy Procedia. 2017;116:4–12. https://doi.org/10.1016/j.egypro.2017.05.050 .

• Köfinger M, Basciotti D, Schmidt R-R. Reduction of return temperatures in urban district heating systems by the implementation of energy-cascades. Energy Procedia. 2017;116:438–51. https://doi.org/10.1016/j.egypro.2017.05.091 . This paper describes consept of temperature cascading as a approach to reduciton of temperature levels in existing high temperature DH networks.

Lauenburg P. 11 - Temperature optimization in district heating systems A2 - Wiltshire, Robin. In: Advanced District heating and cooling (DHC) systems. Oxford: Woodhead Publishing; 2016. p. 223–40.

Li H, Wang SJ. Challenges in smart Low-Temperature District heating development. Energy Procedia. 2014;61:1472–5. https://doi.org/10.1016/j.egypro.2014.12.150 .

DECC. Heat Pumps in District Heating. Final report. URN 15D/537. UK; 2016.

Persson U, Werner S. District heating in sequential energy supply. Appl Energy. 2012;95:123–31. https://doi.org/10.1016/j.apenergy.2012.02.021 .

Brand L, Calvén A, Englund J, Landersjö H, Lauenburg P. Smart district heating networks – a simulation study of prosumers’ impact on technical parameters in distribution networks. Appl Energy. 2014;129(0):39–48. https://doi.org/10.1016/j.apenergy.2014.04.079 .

Brand L, Calvén A, Englund J, Landersjö H, Lauenburg P. Smart district heating networks – A simulation study of prosumers’ impact on technical parameters in distribution networks. Appl Energy. 2014;129(Supplement C):39–48. https://doi.org/10.1016/j.apenergy.2014.04.079 .

Brange L, Englund J, Lauenburg P. Prosumers in district heating networks – A Swedish case study. Appl Energy. 2016;164(Supplement C):492–500. https://doi.org/10.1016/j.apenergy.2015.12.020 .

Pietra BD, Zanghirella F, Puglisi G. An Evaluation of Distributed Solar Thermal “Net Metering” in Small-scale District Heating Systems. Energy Procedia. 2015;78(Supplement C):1859–64. https://doi.org/10.1016/j.egypro.2015.11.335 .

Wahlroos M, Pärssinen M, Manner J, Syri S. Utilizing data center waste heat in district heating – impacts on energy efficiency and prospects for low-temperature district heating networks. Energy. 2017;140:1228–38. https://doi.org/10.1016/j.energy.2017.08.078 .

Averfalk H, Werner S. Essential improvements in future district heating systems. Energy Procedia. 2017;116:217–25. https://doi.org/10.1016/j.egypro.2017.05.069 .

Yang X, Li H, Svendsen S. Decentralized substations for low-temperature district heating with no legionella risk, and low return temperatures. Energy. 2016;110:65–74. https://doi.org/10.1016/j.energy.2015.12.073 .

•• Li H, Svendsen S, Gudmundsson O, Kuosa M, Rämä M, Sipilä K, et al. Future low temperature district heating design guidebook. Final report of IEA DHC annex TS1. Low temperature district heating for future energy systems. Frankfurt am Main, Germany; 2017. International reseach program whith three year duraiton that has resently finished. The final report provides informaiton aboud latest activities and research directions towards 4th generaiton of DH.

Yang X, Li H, Svendsen S. Alternative solutions for inhibiting legionella in domestic hot water systems based on low-temperature district heating. Build Serv Eng Res Technol. 2016;37(4):468–78. https://doi.org/10.1177/0143624415613945 .

Yang X, Li H, Svendsen S. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating. Energy. 2016;109:248–59. https://doi.org/10.1016/j.energy.2016.04.109 .

European Committee for Standardization. Recommendations for prevention of legionella growth in installations inside buildings conveying water for human consumption. CEN/TR 16355; 2012.

Basciotti D SR, Kofinger M, Doczekal C. Simulation-based analysis and evaluation of domestic hot water preparation principles for lowtemperature district heating networks. The 14th international symposium on district heating and cooling; Stockholm, Sweden; 2014. p. 182–8.

Gadd H, Werner S. Fault detection in district heating substations. Appl Energy. 2015;157:51–9. https://doi.org/10.1016/j.apenergy.2015.07.061 .

Nord N, Løve Nielsen EK, Kauko H, Tereshchenko T. Hanne Kauko, Tymofii Tereshchenko. Challenges and potentials for low-temperature district heating implementation in Norway. Energy. 2018;151:889–902.

Gadd H, Werner S. Achieving low return temperatures from district heating substations. Appl Energy. 2014;136:59–67. https://doi.org/10.1016/j.apenergy.2014.09.022 .

Ancona MA, Branchini L, De Pascale A, Melino F. Smart District Heating: Distributed Generation Systems’ Effects on the Network. Energy Procedia. 2015;75(Supplement C):1208–13. https://doi.org/10.1016/j.egypro.2015.07.157 .

Ancona MA, Branchini L, Di Pietra B, Melino F, Puglisi G, Zanghirella F. Utilities substations in Smart District heating networks. Energy Procedia. 2015;81:597–605. https://doi.org/10.1016/j.egypro.2015.12.044 .

Paulus C, Papillon P. Substations for decentralized Solar District heating: design, performance and energy cost. Energy Procedia. 2014;48:1076–85. https://doi.org/10.1016/j.egypro.2014.02.122 .

Tol Hİ, Svendsen S. Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: a case study in Roskilde, Denmark. Energy. 2012;38(1):276–90. https://doi.org/10.1016/j.energy.2011.12.002 .

Laajalehto T, Kuosa M, Mäkilä T, Lampinen M, Lahdelma R. Energy efficiency improvements utilising mass flow control and a ring topology in a district heating network. Appl Therm Eng. 2014;69(1):86–95. https://doi.org/10.1016/j.applthermaleng.2014.04.041 .

Kuosa M, Kontu K, Mäkilä T, Lampinen M, Lahdelma R. Static study of traditional and ring networks and the use of mass flow control in district heating applications. Appl Therm Eng. 2013;54(2):450–9. https://doi.org/10.1016/j.applthermaleng.2013.02.018 .

Schmidt D, Kallert A, Blesl M, Svendsen S, Li H, Nord N, et al. Low Temperature District Heating for Future Energy Systems. Energy Procedia. 2017;116(Supplement C):26–38. https://doi.org/10.1016/j.egypro.2017.05.052 .

Brand M., Heating and Domestic hot water Systems in Buildings Supplied by low-Temperature District heating, PhD thesis department of Civil Engineering; 2014.

Bøhm B, Kristjansson H. Single, twin and triple buried heating pipes: on potential savings in heat losses and costs. Int J Energy Res. 2005;29(14):1301–12.

Li H, Dalla Rosa A, Svendsen S, editors. Design of a low temperature district heating network with supply recirculation. 12th international symposium on district heating and cooling; 2010.

Averfalk H, Werner S. Novel low temperature heat distribution technology. Energy. 2018;145:526–39. https://doi.org/10.1016/j.energy.2017.12.157 .

Gustafsson J, 12 - District heating monitoring SF, A2 -Wiltshire c s. District heating monitoring and control systems. In: Robin. Advanced District heating and cooling (DHC) systems. Oxford: Woodhead Publishing; 2016. p. 241–58.

Wang Y, You S, Zhang H, Zheng X, Wei S, Miao Q, et al. Operation stability analysis of district heating substation from the control perspective. Energ Buildings. 2017;154:373–90. https://doi.org/10.1016/j.enbuild.2017.08.034 .

Sandin F, Gustafsson, J., Delsing, J. Fault detection with Hourly District energy data: probabilistic methods and heuristics for automated detection of anomalies. Swedish District heating association, technical report, 120 p. ISBN: 978–91-7381 125–5; 2013.

Xue P, Zhou Z, Fang X, Chen X, Liu L, Liu Y, et al. Fault detection and operation optimization in district heating substations based on data mining techniques. Appl Energy. 2017;205:926–40. https://doi.org/10.1016/j.apenergy.2017.08.035 .

Fabrizio E, Ferrara M, Monetti V. Chapter 10 Smart heating Systems for Cost- Effective Retrofitting. In: Cost-effective energy efficient building retrofitting. Cambridge: Woodhead Publishing; 2017. p. 279–304.

Ahmad MW, Mourshed M, Mundow D, Sisinni M, Rezgui Y. Building energy metering and environmental monitoring – a state-of-the-art review and directions for future research. Energy and Buildings. 2016;120:85–102. https://doi.org/10.1016/j.enbuild.2016.03.059 .

Bünning F, Wetter M, Fuchs M, Müller D. Bidirectional low temperature district energy systems with agent-based control: performance comparison and operation optimization. Appl Energy. 2018;209:502–15. https://doi.org/10.1016/j.apenergy.2017.10.072 .

Christiansen CH WJ, Jørgensen H, Thorsen JE, Bennetsen J, Larsen CT, et al., Demonstration of low energy district heating system for low energy building in Ringgårdens Afd. 34 in Lystrup,. Copenhagen, Teknologisk institute, Maj. 2011.

Christiansen CH PO, Bøhm B, Thorsen JE, Ting Larsen C, Jepsen BK et al. Development and demonstration of low-energy district heating for lowenergy buildings. Main report and appendices. Teknologisk Institut, March; 2009.

SSE zero carbon home development. < http://www.zerocarbonhub.org/greenwatt-way-sse /> [accessed 09.03.18].

Wiltshire R. Low temperature district energy systems. Urban energy conference; October 13–14; Debrecen, Hungary; 2011. p. p. 91–9.

Schmidt D, Kallert A, Orozaliev J, Best I, Vajen K, Reul O, et al. Development of an 602 Innovative Low Temperature Heat Supply Concept for a New Housing Area. Energy 603 Procedia. 2017;116:39–47. https://doi.org/10.1016/j.egypro.2017.05.053 .

Rämä M, Heikkinen J, Klobut K, Laitinen A, editors. Network simulation of low heat 605 demand residential area. Submitted to the 14th international symposium on district 606 heating and cooling. 2014.

Klobut K, Knuuti, A., Vares, S., Heikkinen, J., Rämä, M., Laitinen, A., Ahvenniemi, H., Hoang, H., Shemeikka, J. and Sipilä, K. Future district heating solutions for residential districts. VTT Technology (written in Finnish). http://issuu.com/vttfinland/docs/t187/02014 .

Kauko H, Kvalsvik KH, Rohde D, Hafner A, Nord N. Dynamic modelling of local 612 low-temperature heating grids: A case study for Norway. Energy. 2017;139:289–97. 613. https://doi.org/10.1016/j.energy.2017.07.086 .

Kauko H, Kvalsvik KH, Rohde D, Nord N, Utne Å. Dynamic 615 modelling of local district heating grids with prosumers: A case study for Norway. Energy. 616 https://doi.org/10.1016/jenergy201803.033 .

Vetterli N, Sulzer M, Menti U-P. Energy monitoring of a low temperature heating and cooling district network. Energy Procedia. 2017;122:62–7. https://doi.org/10.1016/j.egypro.2017.07.289 .

Sun Q, Li H, Wallin F, Zhang Q. Marginal costs for district heating. Energy Procedia. 2016;104:323–8. https://doi.org/10.1016/j.egypro.2016.12.055 .

Sipila K, Ikaheimo J, Forsstrom J, Shemeikka J, Klobut K, Nystedt A, & Jahn J (2005). Technical features for heat trade in distributed energy generation. VTT TIEDOTTEITA, 2305

Grönkvist S, Sandberg P. Driving forces and obstacles with regard to co-operation 626 between municipal energy companies and process industries in Sweden. Energy 627. Policy. 2006;34(13):1508–19. https://doi.org/10.1016/j.enpol.2004.11.001 .

Stabell C, Fjeldstad Ø. Configuring value for competitive advantage: on chains, shops,, and networks. Strat Manage J. 1998;19:413–37.

Westin P, Lagergren F. Re-regulating district heating in Sweden. Energy Policy. 2002;30(7):583–96. https://doi.org/10.1016/S0301-4215(01)00126-4 .

Zhang J, Ge B, Xu H. An equivalent marginal cost-pricing model for the district heating market. Energy Policy. 2013;63:1224–32. https://doi.org/10.1016/j.enpol.2013.09.017 .

Li H, Sun Q, Zhang Q, Wallin F. A review of the pricing mechanisms for district heating systems. Renew Sust Energ Rev. 2015;42:56–65. https://doi.org/10.1016/j.rser.2014.10.003 .

Dalenback J-O. SDH Solar District heating in Europe - guideline for end-user feed-in of solar heat. In: Solar District Heating Stuttgart, Germany. Stuttgart; 2015.