Future Changes in Climate over the Arabian Peninsula based on CMIP6 Multimodel Simulations

Mansour Almazroui1, Md. Nazrul Islam1, Sajjad Saeed1, Fahad Saeed1, Muhammad Ismail1
1Center of Excellence for Climate Change Research/Department of Meteorology, King Abdulaziz University, PO Box 80208, Jeddah, 21589, Saudi Arabia

Tóm tắt

AbstractThis paper presents the changes in projected temperature and precipitation over the Arabian Peninsula for the twenty-first century using the Coupled Model Intercomparison Project phase 6 (CMIP6) dataset. The changes are obtained by analyzing the multimodel ensemble from 31 CMIP6 models for the near (2030–2059) and far (2070–2099) future periods, with reference to the base period 1981–2010, under three future Shared Socioeconomic Pathways (SSPs). Observations show that the annual temperature is rising at the rate of 0.63 ˚C decade–1 (significant at the 99% confidence level), while annual precipitation is decreasing at the rate of 6.3 mm decade–1 (significant at the 90% confidence level), averaged over Saudi Arabia. For the near (far) future period, the 66% likely ranges of annual-averaged temperature is projected to increase by 1.2–1.9 (1.2–2.1) ˚C, 1.4–2.1 (2.3–3.4) ˚C, and 1.8–2.7 (4.1–5.8) ˚C under SSP1–2.6, SSP2–4.5, and SSP5–8.5, respectively. Higher warming is projected in the summer than in the winter, while the Northern Arabian Peninsula (NAP) is projected to warm more than Southern Arabian Peninsula (SAP), by the end of the twenty-first century. For precipitation, a dipole-like pattern is found, with a robust increase in annual mean precipitation over the SAP, and a decrease over the NAP. The 66% likely ranges of annual-averaged precipitation over the whole Arabian Peninsula is projected to change by 5 to 28 (–3 to 29) %, 5 to 31 (4 to 49) %, and 1 to 38 (12 to 107) % under SSP1–2.6, SSP2–4.5, and SSP5–8.5, respectively, in the near (far) future. Overall, the full ranges in CMIP6 remain higher than the CMIP5 models, which points towards a higher climate sensitivity of some of the CMIP6 climate models to greenhouse gas (GHG) emissions as compared to the CMIP5. The CMIP6 dataset confirmed previous findings of changes in future climate over the Arabian Peninsula based on CMIP3 and CMIP5 datasets. The results presented in this study will be useful for impact studies, and ultimately in devising future policies for adaptation in the region.

Từ khóa


Tài liệu tham khảo

Alamgir M, Ahmed K, Homsi R, Dewan A, Wang JJ, Shahid S (2019) Downscaling and projection of spatiotemporal changes in temperature of Bangladesh. Earth Syst Environ 3:381–398. https://doi.org/10.1007/s41748-019-00121-0

Almazroui M (2011) Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos Res 99:400–414. https://doi.org/10.1016/j.atmosres.2010.11.006

Almazroui M (2012) Temperature variability over saudi arabia and its association with global climate indices. JKAU Met Environ Arid Land Agric Sci 23(1):85–108. https://doi.org/10.4197/Met.23-1.6

Almazroui M (2013) Simulation of present and future climate of Saudi Arabia using a regional climate model (PRECIS). Int J Climatol 33:2247–2259. https://doi.org/10.1002/joc.3721

Almazroui M (2019) Temperature changes over the CORDEX–MENA domain in the 21st century using CMIP5 data downscaled with RegCM4: a focus on the Arabian Peninsula. Adv Meteorol. https://doi.org/10.1155/2019/5395676 ((Article ID 5395676))

Almazroui M (2020a) Changes in temperature trends and extremes over Saudi Arabia for the period 1978–2019. Adv Meteorol 2020:8828421. https://doi.org/10.1155/2020/8828421

Almazroui M (2020b) Rainfall trends and extremes in Saudi Arabia in recent decades. Atmosphere 11:964. https://doi.org/10.3390/atmos11090964

Almazroui M, Saeed S (2020) Contribution of extreme daily precipitation to total rainfall over the Arabian Peninsula. Atmos Res 231:104672. https://doi.org/10.1016/j.atmosres.2019.104672

Almazroui M, Islam MN, Athar H, Jones PD, Rahman MA (2012) Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int J Climatol 32:953–966. https://doi.org/10.1002/joc.3446

Almazroui M, Islam MN, Jones PD (2013) Urbanization effects on the air temperature rise in Saudi Arabia. Clim Chang 120(1–2):109–122. https://doi.org/10.1007/s10584-013-0796-2

Almazroui M, Abid MA, Athar H, Islam MN, Ehsan MA (2013) Interannual variability of rainfall over the Arabian Peninsula using the IPCC AR4 Global Climate Models. Int J Climatol 33:2328–2340. https://doi.org/10.1002/joc.3600

Almazroui M, Islam MN, Dambul R, Jones PD (2014) Trends of temperature extremes in Saudi Arabia. Int J Climatol 34:808–826. https://doi.org/10.1002/joc.3722

Almazroui M, Saeed F, Islam MN, Alkhalaf AK (2016) Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR4 Global Climate Models over the Arabian Peninsula. Atmos Res 182:163–175. https://doi.org/10.1016/j.atmosres.2016.07.025

Almazroui M, Islam MN, Sajjad S, Alkhalaf AK, Ramzah D (2017a) Assessment of uncertainties in projected temperature and precipitation over the Arabian peninsula using three categories of Cmip5 multimodel ensembles. Earth Syst Environ 1:23. https://doi.org/10.1007/s41748-017-0027-5

Almazroui M, Islam MN, Fahad S, Alkhalaf AK, Dambul R (2017b) Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmos Res 194:202–213. https://doi.org/10.1016/j.atmosres.2017.05.005

Almazroui M, Saeed S, Islam MN, Khalid MS, Alkhalaf AK, Dambul R (2017c) Assessment of uncertainties in projected temperature and precipitation over the Arabian Peninsula: a comparison between different categories of CMIP3 models. Earth Syst Environ 1:12. https://doi.org/10.1007/s41748-017-0012-z

AlSarmi SH, Washington R (2013) Changes in climate extremes in the Arabian Peninsula: analysis of daily data. Int J Climatol 34:1329–1345. https://doi.org/10.1002/joc.3772

Attada R, Dasari HP, Chowdary JS, Yadav RK, Knio O, Hoteit I (2018a) Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns. Int J Climatol 39:445–464. https://doi.org/10.1002/joc.5821

Attada R, Yadav RK, Kunchala RK, Dasari HP, Knio O, Hoteit (2018b) Prominent mode of summer surface air temperature variability and associated circulation anomalies over the Arabian Peninsula. Atmos Sci Lett. https://doi.org/10.1002/asl.860

Barfus K, Bernhofer C (2014) Assessment of GCM performances for the Arabian Peninsula, Brazil, and Ukraine and indications of regional climate change. Environ Earth Sci 72:4689–4703. https://doi.org/10.1007/s12665-014-3147-3

Bi D, Dix M, Marsland S et al (2012) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64. https://doi.org/10.22499/2.6301.004

Bucchignani E, Mercogliano P, Panitz HJ, Montesarchio M (2018) Climate change projections for the Middle EasteNorth Africa domainwith COSMO–CLM at different spatial resolutions. Adv Clim Change Res 9(1):66–80. https://doi.org/10.1016/j.accre.2018.01.004

Cao J, Wang B, Yang YM, Ma L, Li J, Sun B, Bao Y, He J, Zhou X, Wu L (2018) The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. Geosci Model Dev 11:2975–2993. https://doi.org/10.5194/gmd-11-2975-2018

Ehsan MA, Nicolì D, Kucharski F, Almazroui M et al (2020) Atlantic Ocean influence on Middle East summer surface air temperature. NPJ Clim Atmos Sci. https://doi.org/10.1038/s41612-020-0109-1 ((Article No. 5))

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

Folland CK, Rayner NA, Brown SJ, Smith TM, Shen SSP, Parker DE, Macadam I, Jones PD, Jones RN, Nicholls N, Sexton DMH (2001) Global temperature change and its uncertainties since 1861. Geophys Res Lett 28:2621–2624. https://doi.org/10.1029/2001GL012877

Gutjahr O, Putrasahan D, Lohmann K, Jungclaus JH, von Storch JS, Brüggemann N, Haak H, Stössel A (2019) Max planck institute earth system model (MPI–ESM1.2) for the high-resolution model intercomparison project (HighResMIP). Geosci Model Dev 12:3241–3281. https://doi.org/10.5194/gmd-12-3241-2019

Haarsma RJ, Roberts MJ, Vidale PL et al (2016) High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci Model Dev 9:4185–4208. https://doi.org/10.5194/gmd-9-4185-2016

Haensler A, Saeed F, Jacob D (2013) Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Clim Chang 121(2):349–363. https://doi.org/10.1007/s10584-013-0863-8

Hajima T, Watanabe M, Yamamoto A, Tatebe H, Noguchi MA, Abe M, Ohgaito R, Ito A, Yamazaki D, Okajima H, Ito A, Takata K, Ogochi K, Watanabe S, Kawamiya M (2019) Description of the MIROC–ES2L Earth system model and evaluation of its climate–biogeochemical processes and feedbacks. Geosci Model Dev Discuss. https://doi.org/10.5194/gmd-2019-275,inreview

Harris IC, Jones PD (2015) CRU TS3.23: climatic research unit (CRU) time-series (TS) version 3.23 of high resolution gridded data of month–by–month variation in climate (Jan. 1901–Dec. 2014). Centre Environ Data Anal. https://doi.org/10.5285/4c7fdfa6-f176-4c58-acee-683d5e9d2ed5

Hasanean H, Almazroui M (2015) Review rainfall: features and variations over Saudi Arabia. A Rev Clim 3(3):578–626. https://doi.org/10.3390/cli3030578

He B et al (2019) CAS FGOALS–f3–L model datasets for CMIP6 historical Atmospheric Model Inter–comparison Project simulation. Adv Atmos Sci 36(8):771–778. https://doi.org/10.1007/s00376-019-9027-8

Held IM, Guo H, Adcroft A, Dunne JP, Horowitz LW, Krasting J et al (2019) Structure and performance of GFDL’s CM4.0 climate model. J Adv Model Earth Syst. https://doi.org/10.1029/2019MS001829

IPCC (2013) Climate Change 2013: The Physical Science Basis, Contributionof Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkKotwicki V, Al Sulaimani Z (2009) Climates of the Arabian Peninsula—past, present, future. Int J Clim Chan Strat Managem 1(3):297–310

Islam MN, Almazroui M, Dambul R, Jones PD, Alamoudi AO (2015) Long–term changes in seasonal temperature extremesoverSaudiArabiaduring1981–2010. Int J Climatol 35(7):1579–1592. https://doi.org/10.1002/joc.4078

Kothawale DR, Munot AA, Krishna KK (2010) Surface air temperature variability over India during 1901–2007, and its association with ENSO. Clim Res 42:89–104. https://doi.org/10.3354/cr00857

Kotwicki V, Al Sulaimani Z (2009) Climates of the Arabian Peninsula—past, present, future. Int J Clim Change Strategies Manag 1(3):297–310. https://doi.org/10.1108/17568690910977500

Lauritzen PH, Nair RD, Herrington AR, Callaghan P, Goldhaber S, Dennis JM et al (2018) NCAR release of CAM–SE in CESM2.0: a reformulation of the spectral element dynamical core in dry–mass vertical coordinates with comprehensive treatment of condensates and energy. J Advan Model Earth Syst 10:1537–1570. https://doi.org/10.1029/2017MS001257

Law RM, Ziehn T, Matear RJ, Lenton A et al (2017) The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS–ESM1)—Part 1: Model description and pre–industrial simulation. Geosci Model Dev 10:2567–2590. https://doi.org/10.5194/gmd-10-2567-2017

Lin Y, Huang X, Liang Y et al (2020) Community Integrated Earth System Model (CIESM): Description and Evaluation. J Adv Model Earth Syst. https://doi.org/10.1029/2019MS002036

Liu SM, Chen YH, Rao J, Cao C, Li SY, Ma MH, Wang YB (2019) Parallel comparison of major sudden stratospheric warming events in CESM1–WACCM and CESM2–WACCM. Atmosphere 10:679

Massonnet F, Ménégoz M, Acosta M et al (2020) Replicability of the EC–Earth3 Earth system model under a change in computing environment. Geosci Model Dev 13:1165–1178. https://doi.org/10.5194/gmd-13-1165-2020

O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM (2016) The Scenario Model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482. https://doi.org/10.5194/gmd-9-3461-2016

Pal J, Eltahir E (2016) Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat Clim Chang 6:197–200. https://doi.org/10.1038/nclimate2833

Rashid IU, Almazroui M, Saeed S, Atif RM (2020) Analysis of extreme summer temperatures in Saudi Arabia and the association with large–scale atmospheric circulation. Atmos Res 231:104659. https://doi.org/10.1016/j.atmosres.2019.104659

Riahi K, Vuuren V et al (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ Change 42:153–168

Rong XY, Li J, Chen HM et al (2019) Introduction of CAMS–CSM model and its participation in CMIP6 [J]. Clim Chang Res 15(5):540–544. https://doi.org/10.12006/j.issn.1673-1719.2019.186

Schneider U, Becker A, Finger P, Meyer–Christoffer A, Rudolf B, Ziese M (2016) GPCC Full Data Reanalysis Version 7.0: Monthly Land–Surface Precipitation from Rain Gauges built on GTS based and Historic Data. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6000072

Séférian R, Nabat P, Michou M, Saint-Martin D, Voldoire A, Colin JA (2019) Evaluation of CNRM Earth-System model, CNRM-ESM2-1: role of Earth system processes in present-day and future climate. J Adv Model Earth Syst. https://doi.org/10.1029/2019MS001791

Sellar A, Jones C, Mulcahy J, Tang Y et al (2019) UKESM1: description and evaluation of the UK Earth System Model. J Advan Model Earth Syst. https://doi.org/10.1029/2019MS001739

Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

Song Y, Li X, Bao Y et al (2020) FIO-ESM v2.0 Outputs for the CMIP6 Global Monsoons Model Intercomparison Project Experiments. Adv Atmos Sci 37:1045–1056

Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, von Salzen K, Yang D, Winter B (2019) The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev 12:4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

Syed FS, Latif M, Al-Maashi A, Ghulam A (2019) Regional climate model RCA4 simulations of temperature and precipitation over the Arabian Peninsula: sensitivity to CORDEX domain and lateral boundary conditions. Clim Dyn 53:7045–7064. https://doi.org/10.1007/s00382-019-04974-z

Tatebe H, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, Sudo K, Sekiguchi M, Abe M, Saito F, Chikira M, Watanabe S, Mori M, Hirota N, Kawatani Y, Mochizuki T, Yoshimura K, Takata K, O’ishi R, Yamazaki D, Suzuki T, Kurogi M, Kataoka T, Watanabe M, Kimoto M (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev 12:2727–2765. https://doi.org/10.5194/gmd-12-2727-2019

Volodin EM, Mortikov EV, Kostrykin SV et al (2018) Simulation of the modern climate using the INM–CM48 climate model. Russian J Num Analy Math Model 33(6):367–374. https://doi.org/10.1515/rnam-2018-0032

Voldoire A, Saint-Martin D, Sénési S, Decharme B, Alias A, Chevallier M et al (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Advan Model Earth Syst 11:2177–2213. https://doi.org/10.1029/2019MS001683

Willmott CJ, Matsuura K (2001) Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999). Available at https://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html

Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, Wei M, Huang A, Zhang Y, Liu X (2019) The Beijing Climate Center Climate System Model (BCC–CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600. https://doi.org/10.5194/gmd-12-1573-2019

Yukimoto S, Kawai H, KoshiroT ON, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yabu S, Yoshimura H, Shindo E, Mizuta R, Obata A, Adachi Y, Ishii M (2019) The Meteorological Research Institute Earth System Model version 2.0, MRI–ESM2.0: description and basic evaluation of the physical component. J Meteor Soc Japan 97:000–000. https://doi.org/10.2151/jmsj.2019-051