Fusion of HJ1B and ALOS PALSAR data for land cover classification using machine learning methods

X.Y. Wang1,2, Y.G. Guo1,2, J. He3, L.T. Du1,2
1State Key Laboratory Breeding Base of Land Degradation and Ecological Restoration of Northwest China, Ningxia University, Yinchuan 750021, Ningxia, China
2Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
3School of Resources and Environment, Ningxia University, Yinchuan 750021, Ningxia, China

Tài liệu tham khảo

Akar, 2012, Classification of multispectral images using Random Forest algorithm, J. Geod. Geoinf., 1, 105, 10.9733/jgg.241212.1 Amolins, 2007, Wavelet based image fusion techniques—An introduction: review and comparison, ISPRS J. Photogramm., 62, 249, 10.1016/j.isprsjprs.2007.05.009 Ban, 2010, Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: object-based and knowledge-based approach, Int. J. Remote Sens., 31, 1391, 10.1080/01431160903475415 Basuki, 2013, Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and Landsat-7 ETM+ data, Int. J. Remote Sens., 34, 4871, 10.1080/01431161.2013.777486 Benz, 2004, Multi-resolution: object-oriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS J. Photogramm., 58, 239, 10.1016/j.isprsjprs.2003.10.002 Blaschke, 2010, Object based image analysis for remote sensing, ISPRS J. Photogramm., 65, 2, 10.1016/j.isprsjprs.2009.06.004 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Burges, 1998, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Disc., 2, 121, 10.1023/A:1009715923555 Cervone, 2012, Supervised machine learning of fused RADAR and optical data for land cover classification, J. Appl. Remote Sens., 6, 1 Chettri, 2013, Linking spatio-temporal land cover change to biodiversity conservation in the Koshi Tappu Wildlife Reserve, Nepal.Divers, 5, 335, 10.3390/d5020335 Chibani, 2006, Additive integration of SAR features into multispectral SPOT images by means of the à trous wavelet decomposition, ISPRS J. Photogramm., 60, 306, 10.1016/j.isprsjprs.2006.05.001 Choi, 2005, Fusion of multispectral and panchromatic satellite images using the curvelet transform, IEEE Geosci. Remote Sens. Lett., 2, 136, 10.1109/LGRS.2005.845313 Coillie, 2007, Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium, Remote Sens. Environ., 110, 476, 10.1016/j.rse.2007.03.020 Drăgut, 2014, Automated parameterization for multi-scale image segmentation on multiple layers, ISPRS J. Photogramm., 88, 119, 10.1016/j.isprsjprs.2013.11.018 Duro, 2012, A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery, Remote Sens. Environ, 118, 259, 10.1016/j.rse.2011.11.020 Ehlers, 2010, Multi-sensor image fusion for pansharpening in remote sensing, Int. J. Image Data fusion, 1, 25, 10.1080/19479830903561985 Flores-De-Santiago, 2013, An object-oriented classification method for mapping mangroves in Guinea West Arica, using multipolarized ALOS PALSAR L-band data, Int. J. Remote Sens., 34, 563, 10.1080/01431161.2012.715773 Franco-Lopez, 2001, Estimation and mapping of forest stand density volume, and cover type using the k-nearest neighbors method, Remote Sens. Environ., 77, 251, 10.1016/S0034-4257(01)00209-7 Freeman, 2012, Evaluating effectiveness of down-sampling for stratified designs and unbalanced prevalence in Random Forest models of tree species distributions in Nevada, Ecol. Model., 233, 1, 10.1016/j.ecolmodel.2012.03.007 Gao, 2006, Comparison of pixel-based and object-oriented image classification approaches −a case study in a coal fire area, Wuda, Inner Mongolia, China, Int. J. Remote Sens., 27, 4039, 10.1080/01431160600702632 Gislason, 2006, Random Forests for land cover classification, Pattern Recogn. Lett., 27, 294, 10.1016/j.patrec.2005.08.011 González-Audícana, 2005, Comparison between Mallat’s and the ‘à trous’ discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images, Int. J. Remote Sens., 26, 595, 10.1080/01431160512331314056 Jia, 2014, Land cover classification usingLandsat 8 operational land imager data in Beijing, China, Geocarto Int., 29, 941, 10.1080/10106049.2014.894586 Jiang, 2000, A study on the vegetation in the east side of Helan Mountain, Plant Ecol., 149, 119, 10.1023/A:1026571016286 Johnson, 2012, Satellite image pansharpensing using a hybrid approach for object-based image analysis, ISPRS Int. J. Geo-Inf., 1, 228, 10.3390/ijgi1030228 Larrañaga, 2011, Crop classification in rain-fed and irrigated agricultural areas using Landsat TM and ALOS/PALSAR data, Can. J. Remote Sens., 37, 157, 10.5589/m11-022 Li, 1995, Multisensor image fusion using the wavelet transform, Graph. Model. Im. Proc., 57, 235, 10.1006/gmip.1995.1022 Li, 2002, Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images, Inform. Fusion, 3, 17, 10.1016/S1566-2535(01)00037-9 Li, 2012, A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region, ISPRS J. Photogramm, 70, 26, 10.1016/j.isprsjprs.2012.03.010 Liaw, 2002, Classification and regression by randomForest, R News Newslett. R Project, 2, 18 Liu, 2010, Assessing object-based classification: advantages and limitations, Remote Sens. Lett., 1, 187, 10.1080/01431161003743173 Long, 2013, Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest, GISci Remote Sens., 50, 418, 10.1080/15481603.2013.817150 Lu, 2011, A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon, GISci. Remote Sens., 48, 345, 10.2747/1548-1603.48.3.345 McNairn, 2009, The contribution of ALOS PALSAR multipolarization and Polarimetric data to crop classification, IEEE Trans. Geosci. Remote Sens., 47, 3981, 10.1109/TGRS.2009.2026052 Meng, 2011, Validation of HJ-1B charge-coupled device vegetation index products wih spectral reflectance of Hyperion, Int. J. Remote Sens, 32, 9051, 10.1080/01431161.2010.549847 Myint, 2011, Per-pixel vs: object-based classification of urban land cover extraction using high spatial resolution imagery, Remote Sens. Environ., 115, 1145, 10.1016/j.rse.2010.12.017 Núñez, 1999, Multiresolution-Based image fusion with additive wavelet decomposition, IEEE Trans. Geosci. Remote Sens., 37, 1204, 10.1109/36.763274 Naidoo, 2012, Classification of savanna tree species in the Greater kruger National Park region, by integrating hyperspectral and LIDAR data in a Random Forest data mining environment, ISPRS J. Photogramm., 69, 167, 10.1016/j.isprsjprs.2012.03.005 Otukei, 2010, Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms, Int. J. Appl. Earth Obs. Geoinfe., S27 Pajares, 2004, A wavelet-based image fusion tutorial, Pattern Recogn., 37, 1855, 10.1016/j.patcog.2004.03.010 Pal, 2005, Random forest classifier for remote sensing classification, Int. J. Remote Sens., 26, 217, 10.1080/01431160412331269698 Pal, 2006, Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data, Int. J. Remote Sens., 27, 2877, 10.1080/01431160500242515 Powell, 2010, Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches, Remote Sens. Environ., 114, 1053, 10.1016/j.rse.2009.12.018 Qi, 2012, A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data, Remote Sens. Environ., 118, 21, 10.1016/j.rse.2011.11.001 Riaño, 2003, Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types, IEEE Trans. Geosci. Remote Sens., 41, 1056, 10.1109/TGRS.2003.811693 Shimoni, 2009, Fusion of PolSAR and PolInSAR data for land cover classification, Int. J. Appl. Earth Obs. Geoinf., 11, 169 Tomppo, 2009, Predicting categorical forest variables using an improved k-nearest neightbor estimator and Landsat imagery, Remote Sens. Environ., 113, 500, 10.1016/j.rse.2008.05.021 Tuanmu, 2014, A global 1-Km consensus land-cover product for biodiversity and ecosystem modeling, Glob. Ecol. Biogeogr., 23, 1031, 10.1111/geb.12182 Turkar, 2012, Classification accuracy of multi-frequency and multi-polarization SAR images for various land covers, IEEE Trans. Geosci. Remote Sens., 5, 936 Ulander, 1996, Radiometric slope correction of synthetic-aperture radar images, IEEE Trans. Geosci. Remote Sens., 34, 1115, 10.1109/36.536527 Waser, 2011, Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric vaiables derived from Airborne Digital Sensor (ADS40) and RC30 data, Remote Sens. Environ., 115, 76, 10.1016/j.rse.2010.08.006 Waske, 2007, Fusion of support vector machines for classification of multisensor data, IEEE Trans. Geosci. Remote Sens., 45, 3858, 10.1109/TGRS.2007.898446 Waske, 2008, Classifying multilevel imagery from SAR and Optical sensors by decision fusion, IEEE Trans. Geosci. Remote Sens., 46, 1457, 10.1109/TGRS.2008.916089 Zhou, 2011, Terrain slope correction and precise registration of SAR data for forest mapping and monitoring, 1 Zhu, 2012, Assessment of spectral polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data, Remote Sens. Environ., 117, 72, 10.1016/j.rse.2011.07.020 Zhu, 2013, Land cover classification using moderate resolution satellite imagery and random forests with post-hoc smoothing, J. Spat. Sci., 58, 323, 10.1080/14498596.2013.819600