Kết hợp giống cây và phân bón hữu cơ/vô cơ để cải thiện tính chất đất mặn-nhiễm kiềm và năng suất lúa

Osama Ali1, B. A. Zayed2, Moamen M. Abou El-Enin3, Aly Farag El Sheikha4, Ahmed M. S. Kheir5, Yasser A. El-Tahlawy6, Wael Nada7, Ahmed Shaaban8
1Crop Science Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom, 32514, Egypt
2Rice Research and Training Center, Agricultural Research Center, Field Crops Research Institute, Sakha, 33717, Egypt
3Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11884, Egypt
4College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang, 330045, China
5Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12112, Egypt
6Agricultural Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
7Soil Science Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom, 32514, Egypt
8Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt

Tóm tắt

Tóm tắt

Hiện tượng ngập mặn trong đất và nhiễm kiềm đã trở thành một mối đe dọa không nhỏ đối với sản xuất lúa bền vững cho an ninh lương thực. Thực hành sinh học hiệu quả trong hệ thống canh tác lúa, bên cạnh việc điều chỉnh các đặc tính của đất mặn-nhiễm kiềm bằng cách sử dụng các phụ gia khác nhau, là một chiến thuật cần thiết để tăng tốc độ phục hồi. Nghiên cứu này nhằm đánh giá ảnh hưởng cải thiện tiềm năng của bảy loại phụ gia hữu cơ/vô cơ đến các thuộc tính của đất và phản ứng khác nhau của ba giống lúa dưới điều kiện đất mặn-nhiễm kiềm tại miền Bắc Ai Cập. Một thí nghiệm thực địa kéo dài 2 năm (2019 và 2020) đã được thực hiện với ba giống lúa, cụ thể là Sakha 106, Giza 179, và lúa lai Ai Cập 1 (EHR1) được trồng trên đất bị ảnh hưởng bởi mặn-nhiễm kiềm có bổ sung bảy loại phụ gia hữu cơ/vô cơ, cụ thể là thạch cao, phân trộn rơm lúa (RSC), phân chuồng (FYM), lưu huỳnh, axit sulfuric, superphosphate canxi, và vỏ trấu bên cạnh đối chứng (đất không có phụ gia). Thiết kế thí nghiệm này là một thí nghiệm theo dải hai yếu tố với các khối hoàn toàn ngẫu nhiên có bốn lần lặp lại. Các phản ứng hình thái-physiological (SPADclorophyl, hàm lượng nước, chỉ số diện tích lá, trọng lượng khô thân) và hóa sinh (hoạt động catalase (CAT), hàm lượng proline, carbohydrates, natri lá (Na+) và kali (K+), và tỷ lệ Na+/K+) đã được xác định cùng với các đặc tính lý-hóa và vi sinh vật của đất, năng suất và các thành phần liên quan. RSC, thạch cao, hoặc lưu huỳnh là các phụ gia hiệu quả nhất trong việc cải thiện các tính chất đất mặn-nhiễm kiềm bằng cách giảm đáng kể độ dẫn điện, mật độ khối, và pH so với đối chứng và đất ban đầu. Các phụ gia thạch cao, RSC, FYM, hoặc lưu huỳnh làm giảm đáng kể Na+ trong đất lần lượt là 14.2, 11.7, 9.1, và 8.3%; giảm tỷ lệ hấp thụ natri lần lượt là 14.9, 12.6, 10.4, và 8.7%; và tỷ lệ natri trao đổi lần lượt là 13.5, 11.5, 9.3, và 8.2%, tương ứng qua cả hai mùa so với đối chứng. Các phụ gia hữu cơ vượt trội so với vô cơ về cacbon sinh khối vi sinh vật, tỷ lệ hô hấp của đất, và hoạt động dehydrogenase với sự vượt trội của RSC, FYM, và vỏ trấu so với điều trị đối chứng. Những khôi phục đất này đã được phản ánh tích cực trong các thông số hình thái-physio-hóa sinh, năng suất, và các thành phần của tất cả các giống lúa được thử nghiệm. EHR1 là giống cây vượt trội về tính chọn lọc ion (Na+ và K+), hoạt động CAT, sở hữu hàm lượng proline thấp và phản ứng hình thái-physiological cao hơn, cũng như năng suất tốt hơn. EHR1 có ảnh hưởng sinh lý đáng kể đối với stress đất mặn-nhiễm kiềm, với năng suất cao hơn (7.70 và 7.50 t ha−1) sau khi xử lý bằng RSC hoặc thạch cao. Điều này cho thấy RSC hoạt động vượt trội hơn các phụ gia khác trong việc cải thiện đất mặn-nhiễm kiềm và nâng cao năng suất lúa. Tóm lại, việc ứng dụng đơn lẻ phân trộn rơm lúa (phụ gia hữu cơ) và thạch cao hoặc lưu huỳnh (phụ gia vô cơ) là một phương pháp tiếp cận bền vững khả thi để điều chỉnh các đặc tính lý-hóa và vi sinh vật của đất mặn-nhiễm kiềm và tăng cường phản ứng nông học cũng như sinh lý của lúa trong môi trường khô hạn.

Từ khóa


Tài liệu tham khảo

Abd El-Mageed TA, Rady MO, Semida WM, Shaaban A, Mekdad AA (2021) Exogenous micronutrients modulate morpho-physiological attributes, yield, and sugar quality in two salt-stressed sugar beet cultivars. J Soil Sci Plant Nutr 21:1421–1436. https://doi.org/10.1007/s42729-021-00450-y

Abd El-Mageed TA, Mekdad AAA, Rady MOA, Abdelbaky AS, Saudy HS, Shaaban A (2022) Physio-biochemical and agronomic changes of two sugar beet cultivars grown in saline soil as influenced by potassium fertilizer. J Soil Sci Plant Nutr 22:3636–3654. https://doi.org/10.1007/s42729-022-00916-7

Abou Tahoun AMM, Abou El-Enin MM, Mancy AG, Sheta MH, Shaaban A (2022) Integrative soil application of humic acid and foliar plant growth stimulants improves soil properties and wheat yield and quality in nutrient-poor sandy soil of a semiarid re- gion. J Soil Sci Plant Nutr 22:2857–2287. https://doi.org/10.1007/s42729-022-00851-7

Adeyemo T, Kramer I, Levy GJ, Mau Y (2022) Salinity and sodicity can cause hysteresis in soil hydraulic conductivity. Geoderma 413:115765. https://doi.org/10.1016/j.geoderma.2022.115765

Aebi H (1984) Catalase in vitro. In: Packer L (Ed.) Methods in enzymology: oxygen radicals in biological systems. New York, USA: Academic Press. https://doi.org/10.1016/S0076-6879(84)05016-3

Ahmad S, Ghafoor A, Akhtar ME, Khan MZ (2016) Implication of gypsum rates to optimize hydraulic conductivity for variable-texture saline–sodic soils reclamation. Land Degrad Dev 27:550–560. https://doi.org/10.1002/ldr.2413

Ahmad HSA, Zafar MK, Naeem S, Shokat S, Inam AS, Naveed J, Xu Z, Li GM, Ali M, Khan R (2022) Impact of pre-anthesis drought stress on physiology, yield-related traits and drought responsive genes in green super rice. Fronti Genet 13:832542. https://doi.org/10.3389/fgene.2022.832542

Ahmed K, Qadir G, Jami AR, Saqib AI, Nawaz MQ, Kamal MA, Haq E (2016) Strategies for soil amelioration using sulphur in salt affected soils. Cercet Agron Mold 49:5–16. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/1187

Al Hinai MS, Ullah A, Al-Rajhi RS, Farooq M (2022) Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin. Environ Exp Bot 193:104687. https://doi.org/10.1016/j.envexpbot.2021.104687

Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry, USA, Academic Press. ISBN 9780125138406

Alghamdi SA, Alharby HF, Abdelfattah MA, Mohamed IAA, Hakeem KR, Rady MM, Shaaban A (2023) Spirulina platensis-inoculated humifed compost boosts rhizosphere soil hydro-physicochemical properties and Atriplex nummularia forage yield and quality in an arid saline calcareous soil. J Soil Sci Plant Nutr 23:2215–2236. https://doi.org/10.1007/s42729-023-01174-x

Allison LE, Bernstein L, Bower CA, Fireman M, Hatcher JT, Hayward HE, Pearson GA, Reeve RC, Richards LA, Wilcox LV (1954) Diagnosis and improvement of saline and alkali soils. Washington, D.C., US Department of Agriculture, USA

APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American public health association/American water works association/water environment federation, Washington DC

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

Bello WB (2012) Influence of gypsum application on wheat (Triticum aestivum) yield and components on saline and alkaline soils of Tigray region, Ethiopia. Greener J Agric Sci 2:316–322. https://doi.org/10.15580/GJAS.2012.7.100912100

Bhatt T, Sharma A, Puri S, Minhas AP (2020) Salt tolerance mechanisms and approaches: future scope of halotolerant genes and rice landraces. Rice Sci 27:368–383. https://doi.org/10.1016/j.rsci.2020.03.002

Bhowmick MK, Srivastava AK, Singh S, Dhara MC, Aich SS, Patra SR, Ismail AM (2020) Realizing the potential of coastal flood-prone areas for rice production in West Bengal: prospects and challenges. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New frontiers in stress management for durable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_28

Bii LC, Ngugi K, Kimani JM, Chemining’wa GN (2020) Genotype by environment analysis of rice (Oryza sativa L.) populations under drought stressed and well-watered environments. Aust J Crop Sci 14:259–262. https://doi.org/10.21475/ajcs.20.14.02.p2112

Castagno LN, Sannazzaro AI, Gonzalez ME, Pieckenstain FL, Estrella MJ (2021) Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Ann Appl Biol 178:256–267. https://doi.org/10.1111/aab.12673

Chaganti VN, Crohn DM (2015) Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma 259:45–55. https://doi.org/10.1016/j.geoderma.2015.05.005

Chapman H, Pratt P (1978) Methods of analysis for soils and waters. University of California, Division of Agriculture Science, CA, USA

Corwin DL, Scudiero E (2019) Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. Adv Agron 158:1–130. https://doi.org/10.1016/bs.agron.2019.07.001

Dash PK, Bhattacharyya P, Roy KS, Neogi S, Nayak AK (2019) Environmental constraints’ sensitivity of soil organic carbon decomposition to temperature, management practices and climate change. Ecol Indic 107:105644. https://doi.org/10.1016/j.ecolind.2019.105644

Day SJ, Norton JB, Strom CF et al (2018) Gypsum, langbeinite, sulfur, and compost for reclamation of drastically disturbed calcareous saline–sodic soils. Int J Environ Sci Technol 16:295–304. https://doi.org/10.1007/s13762-018-1671-5

Devi S, Gupta C, Jat SL, Parmar MS (2017) Crop residue recycling for economic and environmental sustainability: The case of India. Open Agric 2:486–494. https://doi.org/10.1515/opag-2017-0053

Diaz LF, De Bertoldi M, Bidlingmaier W (2007) Compost science and technology, USA, Elsevier. https://www.elsevier.com/books/compost-science-and-technology/diaz/978-0-08-043960-0

Ding Z, Kheir A, Ali MG, Ali OAM, Abdelaal AI, Lin XE, Zhou Z, Wang B, Liu B, He Z (2020) The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-59650-8

Ding Z, Kheir AM, Ali OAM, Hafez EM, ElShamey EA, Zhou Z, Wang B, Lin X, Ge Y, Fahmy AE, Seleiman MF (2021) A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity. J Environ Manag 277:111388. https://doi.org/10.1016/j.jenvman.2020.111388

El Sherbiny HA, El-Hashash EF, Abou El-Enin MM, Nofal RS, Abd El-Mageed TA, Bleih EM, El-Saadony MT, El-Tarabily KA, Shaaban A (2022) Exogenously applied salicylic acid boosts morpho-physiological traits, yield, and water productivity of lowland rice under normal and deficit irrigation. Agronomy 12:1860. https://doi.org/10.3390/agronomy12081860

El-Sayed TA, Erfan AM, El-Naby RM (2019) Recycled rice & wheat straw ash as cement replacement materials. J Eng Res Reports 5:1–9. https://doi.org/10.9734/jerr/2019/v5i216921

Gour L, Maurya SB, Koutu GK, Singh SK, Shukla SS, Mishra DK (2017) Characterization of rice (Oryza sativa L.) genotypes using principal component analysis including scree plot & rotated component matrix. Int J Chem Stud 5:975–983

Guo L, Lin W, Cao C, Li C (2023) Integrated rice-crayfish farming system does not mitigate the global warming potential during rice season. Sci Total Environ 867:161520. https://doi.org/10.1016/j.scitotenv.2023.161520

Hairmansis A, Kustianto B, Suwarno S (2013) Correlation analysis of agronomic characters and grain yield of rice for tidal swamp areas. Indones J Agric Sci 11:11–15

Hariadi YC, Nurhayati AY, Soeparjono S, Arif I (2015) Screening six varieties of rice (Oryza sativa) for salinity tolerance. Proc Environ Sci 28:78–87. https://doi.org/10.1016/j.proenv.2015.07.012

Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2007) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466. https://doi.org/10.4161/psb.21949

Haynes RJ, Belyaeva ON, Zhou YF (2015) Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Manag 35:48–54. https://doi.org/10.1016/j.wasman.2014.10.002

He L, Zhao J, Wang M, Liu Y, Wang Y, Yang S, Wang S, Zhao X, Lyu H (2023) Long-term successive seasonal application of rice straw-derived biochar improves the acidity and fertility of red soil in southern China. Agronomy 13:505. https://doi.org/10.3390/agronomy13020505

Huang L, Liu X, Wang Z, Liang Z, Wang M, Liu M, Suarez DL (2017) Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agric Water Manage 194:48–57. https://doi.org/10.1016/j.agwat.2017.08.012

Iqbal T (2018) Rice straw amendment ameliorates harmful effect of salinity and increases nitrogen availability in a saline paddy soil. J Saudi Soc Agric Sci 17:445–453. https://doi.org/10.1016/j.jssas.2016.11.002

Irakoze W, Quinet M, Prodjinoto H, Rufyikiri G, Nijimbere S, Lutts S (2022) Differential effects of sulfate and chloride salinities on rice (Oryza sativa L.) gene expression patterns: a comparative transcriptomic and physiological approach. Curr Plant Biol 29:100237. https://doi.org/10.1016/j.cpb.2022.100237

Jackson ML (1973) Soil Chemical Analysis, Prentice Hall of India Private Limited, 1st edn. New Delhi, India

Kaur N, Dhawan M, Sharma I, Pati PK (2016) Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biol 16:1–13. https://doi.org/10.1186/s12870-016-0824-2

Khan F, Naaz S, Singh N, Shukla PK, Tripathi R, Yadav HK, Shirke PA (2022) Molecular, physiological and agronomic assessment of genetic diversity in rice in relation to drought treatment. Curr Plant Biol 29:100232. https://doi.org/10.1016/j.cpb.2021.100232

Kheir AMS, Abou Elsoud A, Mahmoud H, Hafez EM, Ali OAM (2019) Integrated effect of nano-Zn, nano-Si, and drainage using crop straw–filled ditches on saline sodic soil properties and rice productivity. Arab J Geosci 12:471. https://doi.org/10.1007/s12517-019-4653-0

Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, Abdelly C (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 171:29–37. https://doi.org/10.1016/j.jhazmat.2009.05.132

Laraswati AA, Padjung RM, Farid N, Nasaruddin MF, Anshori A, Nur Sakinah AI (2021) Image based-phenotyping and selection index based on multivariate analysis for rice hydroponic screening under drought stress. Plant Breed Biotechnol 9:272–286. https://doi.org/10.9787/PBB.2021.9.4.272

Litardo MRC, García Bendezú SJ, Carrillo Zenteno MD, Pérez-Almeida IB, Parismoreno LL, Lombeida García ED (2022) Effect of mineral and organic amendments on rice growth and yield in saline soils. J Saudi Soc Agric Sci 21:29–37. https://doi.org/10.1016/j.jssas.2021.06.015

Liu B, Liu Y, Huang G, Jiang X, Liang Y, Yang C, Huang L (2023) Comparison of yield prediction models and estimation of the relative importance of main agronomic traits affecting rice yield formation in saline-sodic paddy fields. Eur J Agron 148:126870. https://doi.org/10.1016/j.eja.2023.126870

Mahmoud E, Ibrahim M, Robin P, Akkal-Corfini N, El-Saka M (2009) Rice straw composting and its effect on soil properties. Compost Sci Utiliz 17:146–150. https://doi.org/10.1080/1065657X.2009.10702415

Meena MD, Narjary B, Sheoran P, Jat HS, Joshi PK, Chinchmalatpure AR (2022) Changes in physical and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard–pearl millet cropping system. Land Degrad Dev 33:1677–1688. https://doi.org/10.1002/ldr.4256

Mekdad AA, El-Sherif A, Rady MM, Shaaban A (2022) Culture management and application of humic acid in favor of Helianthus annuus L. oil yield and nutritional homeostasis in a dry environment. J Soil Sci Plant Nutr 22:71–86. https://doi.org/10.1007/s42729-021-00636-4

Ministry of Agriculture and Land Reclamation (2020) Bulletin of Agricultural Statistics. Arab Republic of Egypt. the Egyptian Economic Affairs Sector, Dokki, Giza, Egypt

Moe K, Moh SM, Htwe AZ, Kajihara Y, Yamakawa T (2019) Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci 26:309–318. https://doi.org/10.1016/j.rsci.2019.08.005

Mohanty A, Chakraborty K, Mondal S, Jena P, Panda RK, Samal KC, Chattopadhyay K (2023) Relative contribution of ion exclusion and tissue tolerance traits govern the differential response of rice towards salt stress at seedling and reproductive stages. Environ Exp Bot 206:105131. https://doi.org/10.1016/j.envexpbot.2022.105131

Nguyen PM, Do PT, Pham YB, Doan TO, Nguyen XC, Kul LW, Nguyen DD, Vadiveloo A, Um M-J, Ngo HH (2022) Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. Sci Total Environ 852:158203. https://doi.org/10.1016/j.scitotenv.2022.158203

Owis AS, El-Etr WM, Badawi FSF, Abo El-Soud AA, Abdel-Wahab AFM (2016) Bio-processing the crop residues with different amendments for producing high quality compost. Int J Chem Tech Res 9:43–54

Pavani K, Shanmugam PM (2019) Maximization of rice yield in sodic soil through combined application of gypsum and organic amendments. Res Crops 20:676–684. https://doi.org/10.31830/2348-7542.2019.099

Pongprayoon W, Tisarum R, Theerawittaya C, Cha-Um S (2019) Evaluation and clustering on salt-tolerant ability in rice genotypes (Oryza sativa L. subsp. indica) using multivariate physiological indices. Physiol Mol Biol Plants 25:473–483. https://doi.org/10.1007/s12298-018-00636-2

Prud’homme M-P, Gonzalez B, Billard J-P, Boucaud J (1992) Carbohydrate content, fructan and sucrose enzyme activities in roots, stubble and leaves of ryegrass (Lolium perenne L.) as affected by source/sink modification after cutting. J Plant Physiol 140:282–291. https://doi.org/10.1016/S0176-1617(11)81080-1

Qadir M, Ghafoor A, Murtaza G (2001) Amelioration strategies for saline soils: a review. Land Degrad Dev 12:357–386. https://doi.org/10.1002/1099-145X(200011/12)11:6%3c501::AID-LDR405%3e3.0.CO;2-S

Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Academic Press, Adv Agron. https://doi.org/10.1016/S0065-2113(07)96006-X

Rezapour S, Asadzadeh F, Barin M, Nouri A (2022) Organic amendments improved the chemical–nutritional quality of saline-sodic soils. Int J Environ Sci Technol 19:4659–4672. https://doi.org/10.1007/s13762-021-03599-2

Seilsepour M, Rashidi M, Khabbaz BG (2009) Prediction of soil exchangeable sodium percentage based on soil sodium adsorption ratio. Am-Eurasian J Agric Environ Sci 5:1–4

Shaaban A, Al-Elwany OAAI, Abdou NM, Hemida KA, El-Sherif AMA, Abdel-Razek MA, Semida WM, Mohamed GF, Abd El-Mageed TA (2022) Filter mud enhanced yield and soil prop- erties of water-stressed Lupinus termis L. in saline calcareous soil. J Soil Sci Plant Nutr 22:1572–1588. https://doi.org/10.1007/s42729-021-00755-y

Shaaban A, Abd El-Mageed TA, Abd El-Momen WR, Saudy HS, AlElwany OAAI (2023a) The integrated application of phosphorous and zinc affects the physiological status, yield and quality of canola grown in phosphorus-suffered deficiency saline soil. Gesun Pfanz. https://doi.org/10.1007/s10343-023-00843-2

Shaaban A, Mahfouz H, Megawer EA, Saudy HS (2023b) Physiological changes and nutritional value of forage clitoria grown in arid agro-ecosystem as influenced by plant density and water deficit. J Soil Sci Plant Nutr 23:3735–3750. https://doi.org/10.1007/s42729-023-01294-4

Shaaban M, Wu Y, Núñez-Delgado A, Kuzyakov Y, Peng QA, Lin S, Hu R (2023c) Enzyme activities and organic matter mineralization in response to application of gypsum, manure and rice straw in saline and sodic soils. Environ Res 224:115393. https://doi.org/10.1016/j.envres.2023.115393

Singh YP, Arora S, Mishra VK, Dixit H, Gupta RK (2018) Effect of organic and inorganic amendments on amelioration of sodic soil and sustaining rice (Oryza sativa)-wheat (Triticum aestivum) productivity. Indian J Agri Sci 88:140–147

Snedecor GW, Cochran WG (1989) Statistical methods, 8thEd. Iowa State University Press, USA

Sruthi K, Divya B, Senguttuvel P, Revathi P, Kemparaju KB, Koteswararao P, Sundaram RM, Vikram Jeet S, Rangith Kumar E, Bhowimick Kumar P, Vinod KK, Gopala Krishnan S, Singh AK, Hari Prasad AS (2019) Evaluation of genetic diversity of parental lines for development of heterotic groups in hybrid rice (Oryza sativa L.). J Plant Biochem Biotechnol 29:236–252. https://doi.org/10.1007/s13562-019-00529-9

Stamford NP, Figueiredo MVB, da Junior SS, Freitas ADS, Santos CERS, Junior MAL (2015) Effect of gypsum and sulfur with Acidithiobacillus on soil salinity alleviation and on cowpea biomass and nutrient status as affected by PK rock biofertilizer. Sci Hortic 192:287–292. https://doi.org/10.1016/j.scienta.2015.06.008

Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a Biometrical Approach, 3rd edn. McGraw Hill, New York, NY, USA

Sundha P, Basak N, Rai AK, Yadav RK, Sharma PC, Sharma DK (2020) Can conjunctive use of gypsum, city waste composts and marginal quality water rehabilitate saline-sodic soils? Soil Tillage Res 200:104608. https://doi.org/10.1016/j.still.2020.104608

Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, Mcdonald GK (2011) Additive effects of Na+ and Cl– ions on barley growth under salinity stress. J Exp Bot 62:2189–2203. https://doi.org/10.1093/jxb/erq422

Tazeh ES, Pazira E, Neyshabouri MR, Abbasi F, Abyaneh HZ (2013) Effects of two organic amendments on EC, SAR and soluble ions concentration in a saline-sodic soil. Int J Biosci 3:55–68. https://doi.org/10.12692/ijb/3.9.55-68

Tejaswini KL, Manukonda S, Kumar BR, Rao PR, Raju SK (2018) Application of principal component analysis for rice F5 families characterization and evaluation. Emergent Life Sci Res 4:72–84. https://doi.org/10.31783/elsr.2018.417284

Thompson WH, Leege PB, Millner PD, Watson ME (2001) Test methods for the examination of composting and compost (TMECC). 1st. US Composting Council Research and Education Foundation, USA

Tiwari S, Singh Y, Upadhyay PK, Koutu GK (2022) Principal component analysis and genetic divergence studies for yield and quality-related attributes of rice restorer lines. Indian J Genet Plant Breed 82:94–98. https://doi.org/10.31742/IJGPB.82.1.13

Tourky S, Abo-Hamed SA, Saleh HA, Shukry WM (2023) Evaluation of the role of cobalt nutrition in the oxidative machinery of drought-stressed rice (Oryza sativa L.) plants at the reproductive stage. Egyptian J Bot 63:175–191. https://doi.org/10.21608/ejbo.2022.149777.2037

USDA (2022) United States Department of Agriculture. World Agricultural Production. Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 27 December 2022)

Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination. Agric for Meteorol 121:37–53. https://doi.org/10.1016/j.agrformet.2003.08.001

Wolf B (1982) A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Comm Soil Sci Plant Anal 13:1035–1059. https://doi.org/10.1080/00103628209367332

Xie W, Zhang Y, Li J, Wei S, Li X, Yu H, Guan B (2021) Straw application coupled with N and P supply enhanced microbial biomass, enzymatic activity, and carbon use efficiency in saline soil. Appl Soil Ecol 168:104128. https://doi.org/10.1016/j.apsoil.2021.104128

Yahya KE, Jia Z, Luo W, YuanChun H, Ame MA (2022) Enhancing salt leaching efficiency of saline-sodic coastal soil by rice straw and gypsum amendments in Jiangsu coastal area. Ain Shams Eng J 13:101721. https://doi.org/10.1016/j.asej.2022.101721

Yan N, Marschner P (2013) Response of soil respiration and microbial biomass to changing EC in saline soils. Soil Biol Biochem 65:322–328. https://doi.org/10.1016/j.soilbio.2013.06.008

Youssef SM, Shaaban A, Abdelkhalik A, Abd El Tawwab AR, Abd Al Halim LR, Rabee LA, Alwutayd KM, Ahmed RM, Alwutayd R, Hemida KA (2023) Compost and phosphorus/potassium-solubilizing fungus effectively boosted quinoa’s physio-biochemical traits, nutrient acquisition, soil microbial community, and yield and quality in normal and calcareous soils. Plants 12(17):3071. https://doi.org/10.3390/plants12173071

Yu H, Yang P, Lin H, Ren S, He X (2014) Effects of sodic soil reclamation using flue gas desulphurization gypsum on soil pore characteristics, bulk density, and saturated hydraulic conductivity. Soil Scie Soc Am J 78:1201–1213. https://doi.org/10.2136/sssaj2013.08.0352

Yu Y, Liu J, Liu C, Zong S, Lu Z (2015) Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China. Front Earth Sci 9:259–267. https://doi.org/10.1007/s11707-014-0463-6

Zaman M, Shahid SA, Heng L (2018) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, Switzerland, Springer International Publishing. https://doi.org/10.1007/978-3-319-96190-3

Zayed BA, Salem AK, Ali OAM (2014) Physiological characterization of Egyptian salt-tolerant rice varieties under different salinity levels. Life Sci J 11:1264–1272. https://doi.org/10.7537/marslsj111014.199

Zayed B, Abdelaal M, Deweedar G (2017) Response of rice yield and soil to sulfur application under water and salinity stresses. Egyptian J Agron 39:239–249. https://doi.org/10.21608/agro.2017.1274.1067

Zhang Y, Tang Q, Zou Y, Li D, Qin J, Yang S, Chen L, Xia B, Peng S (2009) Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res 114:91–98. https://doi.org/10.1016/j.fcr.2009.07.008

Zhang J, Li W, Zhou Y, Ding Y, Lei Xu, Jiang Y, Li G (2021) Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice-wheat system. Crop J 9:1191–1197. https://doi.org/10.1016/j.cj.2020.11.007

Zhang Z, Liu H, Liu X, Chen Y, Lu Y, Shen M, Dang K, Zhao Y, Dong Y, Li Q, Li J (2022) Organic fertilizer enhances rice growth in severe saline–alkali soil by increasing soil bacterial diversity. Soil Use Manage 38:964–977. https://doi.org/10.1111/sum.12711

Zhang S, Zheng X, Yin C, Ye Y, Li X (2023) Study on the suitability of rice straw and silicate cement. Case Stud Constr Mater 18:e01739. https://doi.org/10.1016/j.cscm.2022.e01739

Zhao H, Mo Z, Lin Q, Pan S, Duan M, Tian H, Wang S, Tang X (2020) Relationships between grain yield and agronomic traits of rice in southern China. Chil J Agri Res 80:72–79. https://doi.org/10.4067/S0718-58392020000100072