Fusaric acid is a virulence factor of Fusarium oxysporum f. sp. cubense on banana plantlets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Applied and Environmental Microbiology 62:4039–4043
Brown DW, Butchko RA, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genetics and Biology 49:521–532
Brown DW, Lee SH, Kim LH, Ryu JG, Lee S, Seo Y, Kim YH, Busman M, Yun SH, Proctor RH, Lee T (2015) Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Molecular Plant Microbe Interactions 28:319–332
Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews 66:447–459
Crutcher FK, Ortiz CS, Puckhaber LS, Bell AA, Stipanovic RD, Nichols RL, Liu JG (2016) Involvement of fub4, a putative serine hydrolase, in fusaric acid biosynthesis in the cotton pathogen Fusarium oxysporum f. sp. Vasinfectum [abstract]. Proceedings of Beltwide Cotton Conferences, January 5–6, 2016, New Orleans, Louisiana. CDROM
Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. International Journal of Food Microbiology 119:47–50
Ding Z, Li M, Sun F, Xi P, Sun L, Zhang L, Jiang Z (2015) Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense. PLoS One 10:e0122634
Divon HH, Rothandenoyes B, Davydov O, Pietro AD, Fluhr R (2005) Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxysporum f. sp. lycopersici infection. Molecular Plant Pathology 6:459–470
Dong X, Ling N, Wang M, Shen QR, Guo SW (2012) Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in fusarium-infected banana plants. Plant Physiology and Biochemistry 60:171–179
Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA (2006) Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genetics and Biology 43:605–617
Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y, Wang G, Peng C, Jiang X, Zhou D, Ni P, Liang C, Liu L, Wang J, Mao C, Fang X, Peng M, Huang J (2014) Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS One 9:e95543
Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism - from biochemistry to genomics. Nature Reviews Microbiology 3:937–947
Leng Y, Zhong S (2012) Sfp-type 4′-phosphopantetheinyl transferase is required for lysine synthesis, tolerance to oxidative stress and virulence in the plant pathogenic fungus Cochliobolus sativus. Molecular Plant Pathology 13:375–387
Li MH, Yang B, Leng Y, Chao CP, Liu JM, He ZF, Jiang ZD, Zhong S (2011) Molecular characterization of Fusarium oxysporum f. sp. cubense race 1 and 4 isolates from Taiwan and southern China. Canadian Journal of Plant Pathology 33:168–178
Li C, Zuo C, Deng G, Kuang R, Yang Q, Hu C, Sheng O, Zhang S, Ma L, Wei Y, Yang J, Liu S, Biswas MK, Viljoen A, Yi G (2013) Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS One 8:e70226
Li MH, Xie XL, Lin XF, Shi JX, Ding ZJ, Ling JF, Xi PG, Zhou JN, Leng Y, Zhong S, Jiang ZD (2014) Functional characterization of the gene FoOCH1 encoding a putative alpha-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense. Fungal Genetics and Biology 65:1–13
Liang L, Li J, Cheng L, Ling J, Luo Z, Bai M, Xie B (2014) A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum. Microbiological Research 169:835–843
Liu J, Bell AA, Stipanovic RD, Puckhaber LS (2010) Fusaric acid production and pathogenicity of Fusarium oxysporum f. sp. vasinfectum [abstract]. Proceedings of Beltwide Cotton Conferences, January 4–7, 2010, New Orleans, Louisiana. CDROM
Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A (2010a) A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22:2459–2475
Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A (2010b) A nitrogen response pathway regulates virulence in plant pathogenic fungi: role of TOR and the bZIP protein MeaB. Plant Signal & Behaviour 5:1623–1625
Lopez-Diaz C, Rahjoo V, Sulyok M, Ghionna V, Martin-Vicente A, Capilla J, Di Pietro A, Lopez-Berges MS (2018) Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology 19:440–453
Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Applied and Environmental Microbiology 67:1987–1994
Niehaus EM, von Bargen KW, Espino JJ, Pfannmuller A, Humpf HU, Tudzynski B (2014) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Applied Microbiology and Biotechnology 98:1749–1762
Ploetz RC (2006) Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp cubense. Phytopathology 96:653–656
Ploetz RC (2015) Management of Fusarium wilt of banana: a review with special reference to tropical race 4. Crop Protection 73:7–15
Qi YX, Xie YX, Zhang X, Pu JJ, Zhang HQ (2006) The identification of pathogen causing banana fusarium wilt in Hainan. Biotechnology Bulletin (S):316–319
Qi XZ, Guo LJ, Yang LY, Huang JS (2013) Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Physiological and Molecular Plant Pathology 84:76–85
Snoeijers SS, Pérez-García A, Joosten MHAJ, Wit PJGMD (2000) The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. European Journal of Plant Pathology 106:493–506
Stove RH (1962) Fusarial wilt (Panama disease) of bananas and other Musa species. CMI, Kew
Waite BH, Dunlap VC (1953) Preliminary host range studies with Fusarium oxysporum f. sp. cubense. Plant Disease Report 37:79–80
Walkowiak S, Subramaniam R (2014) A nitrogen-responsive gene affects virulence in Fusarium graminearum. Canadian Journal of Plant Pathology 36:224–234
Wang M, Ling N, Dong X, Liu XK, Shen QR, Guo SW (2014) Effect of fusaric acid on the leaf physiology of cucumber seedlings. European Journal of Plant Pathology 138:103–112
Wiemann P, Sieber CMK, Bargen KWV, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf HU, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathogens 9:371–376