Những cải tiến bổ sung trong phân tích dư lượng thuốc trừ sâu trong thực phẩm bằng công nghệ sắc ký khí khối phổ ba quadrupole (GC-QqQ-MS/MS)

Springer Science and Business Media LLC - Tập 410 - Trang 5491-5506 - 2017
Elena Hakme1, Ana Lozano1, Samanta Uclés1, Amadeo R. Fernández-Alba1
1Agrifood Campus of International Excellence (CeiA3), European Union Reference Laboratory for Pesticide Residues in Fruit and Vegetables, Department of Chemistry and Physics, University of Almería, Almería, Spain

Tóm tắt

Hiện nay, việc kiểm soát dư lượng thuốc trừ sâu trong thực phẩm đã được thiết lập vững chắc. Năng lực của công nghệ ba quadrupole để đáp ứng các quy định thực phẩm hiện hành đã được chứng minh. Tuy nhiên, nhu cầu cao thường trực của người tiêu dùng về việc kiểm tra nhạy hơn và nhanh hơn đang thúc đẩy sự phát triển của các phương pháp phân tích được cải tiến, nâng cao hiệu suất về độ nhạy và độ bền, đồng thời giảm thời gian phân tích. Trong công trình này, tính khả thi của việc giảm thời gian chạy xuống còn 12,4 phút bằng cách điều chỉnh chương trình nhiệt độ lò, cho một phương pháp đa dư lượng bao gồm 203 loại thuốc trừ sâu, đã được đánh giá. Kết quả nhạy cảm thỏa mãn đã được đạt được với giới hạn định lượng đạt 2 μg kg−1 cho một loạt trái cây và rau quả phong phú. Phương pháp đã được xác thực dựa trên GC-QqQ-MS/MS cập nhật đã xác nhận những thách thức nêu trên với độ bền thích hợp qua việc ứng dụng cho các phân tích định kỳ với 69 mẫu thực tế. Phương pháp được đề xuất có thể mang lại lợi ích lớn cho các phòng thí nghiệm vì nó cho phép tăng lưu lượng mẫu. Nó cũng rất hữu ích cho các nghiên cứu đánh giá rủi ro, nơi cần đến giới hạn báo cáo thấp và quy mô phân tích rất rộng.

Từ khóa

#dư lượng thuốc trừ sâu #sắc ký khí khối phổ #độ nhạy #độ bền #phân tích thực phẩm

Tài liệu tham khảo

Uclés S, et al. Validation of a multiclass multiresidue method and monitoring results for 210 pesticides in fruits and vegetables by gas chromatography-triple quadrupole mass spectrometry. J Environ Sci Health. 2014;49(8):557–68. Lee J, et al. Rapid and simultaneous analysis of 360 pesticides in brown rice, spinach, orange, and potato using micropore GC-MS/MS. J Agric Food Chem. 2017;65(16):3387–95. Walorczyk S, Kopeć I, Szpyrka E. Pesticide residue determination by gas chromatography-tandem mass spectrometry as applied to food safety assessment on the example of some fruiting vegetables. Food Anal Methods. 2016;9(5):1155–72. Machado I, et al. Determination of pesticide residues in globe artichoke leaves and fruits by GC–MS and LC–MS/MS using the same QuEChERS procedure. Food Chem. 2017;227:227–36. Sawant D, et al. Fast gas chromatography with tandem mass spectrometry analysis of selected persistent organic pollutants and organophosphorus and synthetic pyrethroid pesticides in Indian prawn (Fenneropenaeus indicus) in compliance with the EU-MRLs. J AOAC Int. 2017;100(3):610–5. Silva AS, et al. A multiclass analytical method for pesticides determination in water using DLLME and GC-MS. Rev Virtual Quim. 2017;9(2):550–62. Rai S, et al. A rapid method for the quantitative determination of 34 pesticides in nonalcoholic carbonated beverages using liquid-liquid extraction coupled to dispersive solid-phase cleanup followed by gas chromatography with tandem mass spectrometry. J AOAC Int. 2017;100(3):624–30. Van Deursen MM, et al. Evaluation of time-of-flight mass spectrometric detection for fast gas chromatography. J Chromatogr A. 2000;878(2):205–13. Matisová E, Hrouzková S. Analysis of endocrine disrupting pesticides by capillary GC with mass spectrometric detection. Int J Environ Res Public Health. 2012;9(9):3166–96. van Ysacker PG, et al. Electron capture detection in high speed narrow bore capillary gas chromatography: fast and sensitive analysis of PCBs and pesticides. J High Resolut Chromatgr. 1995;18(7):397–402. Dömötörová M, et al. Fast gas chromatography of polar and non-polar compounds with the on-column injection. Chem Anal. 2005;50(2):365–75. Tanaka KM, Miyagawa H, Nakagawa K. Analysis time reduction using fast gas chromatography-mass spectrometry. J Anal Sci. 2001;17:885–6. Hada M, et al. Trace analysis of pesticide residues in water by high-speed narrow-bore capillary gas chromatography-mass spectrometry with programmable temperature vaporizer. J Chromatogr A. 2000;874(1):81–90. Korenková E, Matisová E, Slobodník J. Study on the feasibility of coupling large-volume injection to fast gas chromatography with mass spectrometric detection for analysis of organochlorine pesticides. J Sep Sci. 2003;26(12–13):1193–7. Purdešová A, et al. Evaluation of calibration approaches for quantification of pesticide residues in surface water by SPE with small-size cartridges followed by fast GC-MS. J Anal Methods. 2013;5(13):3403–9. Cherta L, et al. Multiclass determination of 66 organic micropollutants in environmental water samples by fast gas chromatography-mass spectrometry. ABC. 2012;402(7):2301–14. Kochman M, et al. Fast, high-sensitivity, multipesticide analysis of complex mixtures with supersonic gas chromatography-mass spectrometry. J Chromatogr A. 2002;974(1–2):185–212. Hercegová A, et al. Fast gas chromatography with solid phase extraction clean-up for ultratrace analysis of pesticide residues in baby food. J Chromatogr A. 2005;1084(1–2):46–53. Hercegová A, et al. Study on pesticide residues in apples, apple-based baby food, and their behaviour during processing using fast GC-MS multiresidue analysis. Int J Environ Anal Chem. 2007;87(13–14):957–69. Kirchner M, et al. Fast gas chromatography for pesticide residues analysis using analyte protectants. J Chromatogr A. 2008;1186(1–2):271–80. Húšková R, Matisová E, Kirchner M. Fast GC-MS pesticide multiresidue analysis of apples. Chromatographia. 2008;68(SUPPL. 1):S49–55. Čajka T, Hajšlová J. Gas chromatography-high-resolution time-of-flight mass spectrometry in pesticide residue analysis: advantages and limitations. J Chromatogr A. 2004;1058(1–2):251–61. Patel K, et al. Analysis of pesticide residues in lettuce by large volume-difficult matrix introduction-gas chromatography-time of flight-mass spectrometry (LV-DMI-GC-TOF-MS). Analyst. 2003;128(10):1228–31. Maštovská K, Lehotay SJ. Practical approaches to fast gas chromatography-mass spectrometry. J Chromatogr A. 2003;1000(1–2):153–80. Klee MS, Blumberg LM. Theoretical and practical aspects of fast gas chromatography and method translation. J Chromatogr Sci. 2002;40(5):234–47. Blumberg LM, Klee MS. Optimal heating rate in gas chromatography. JMS. 2000;12(9):508–14. Vaclavik L, et al. Survey of mass spectrometry-based high-throughput methods in food analysis, in high-throughput analysis for food safety. 2014; 15–72. Woolt L, Decker D. Practical fast gas chromatography for contract laboratory program pesticide analyses. J Chromatogr Sci. 2002;40(8):434–40. Mondello L, et al. Ultra-fast essential oil characterization by capillary GC on 50 μm ID column. J Sep Sci. 2004;27(9):699–702. McNair HM, Reed GL. Fast gas chromatography: the effect of fast temperature programming. JMS. 2000;12(6):351–5. Martínez Vidal JL, et al. Trace determination of organotin compounds in water, sediment and mussel samples by low-pressure gas chromatography coupled to tandem mass spectrometry. RCM. 2003;17(18):2099–106. Maštovská K, Hajšlová J, Lehotay SJ. Ruggedness and other performance characteristics of low-pressure gas chromatography-mass spectrometry for the fast analysis of multiple pesticide residues in food crops. J Chromatogr A. 2004;1054(1–2):335–49. Han L, Sapozhnikova Y, Lehotay SJ. Method validation for 243 pesticides and environmental contaminants in meats and poultry by tandem mass spectrometry coupled to low-pressure gas chromatography and ultrahigh-performance liquid chromatography. Food Control. 2016;66:270–82. Malato O, et al. Benefits and pitfalls of the application of screening methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A. 2011;1218(42):7615–26. European Commission DG-SANTE. Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed, N.S. 2015. European Standard. Foods of plant origin—determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE-QuEChERS-method. CSN EN 15662 2008. Furey A, et al. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 2013;115:104–22. EU pesticides database available at: http://www.ec.europa.eu. Anastassiades M, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int. 2003;86(2):412–31. Shen CY, et al. Determination of 17 pyrethroid residues in troublesome matrices by gas chromatography/mass spectrometry with negative chemical ionization. Talanta. 2011;84(1):141–7. Uclés A, et al. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis. Talanta. 2015;144:51–61. EURL-SRM, improvement of ethoxyquin recoveries by QuEChERS through the addition of ascorbic acid initiator/Institution: EURL-SRM version 1 (last update: 22 July 2014). PubChem database available at: https://www.ncbi.nlm.nih.gov/pccompound. Pesticides properties database PPDB available at: http://sitem.herts.ac.uk/aeru/ppdb/en/. Lozowicka B, Rutkowska E, Hrynko I. Simultaneous determination of 223 pesticides in tobacco by GC with simultaneous electron capture and nitrogen-phosphorous detection and mass spectrometric confirmation. Open Chem. 2015;13(1):1137–49. Uclés S, et al. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta. 2017;174:72–81. Lozano A, et al. Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: validation and pilot survey in real samples. J Chromatogr A. 2012;1268:109–22. Ferrer C, et al. European Union proficiency tests for pesticide residues in fruit and vegetables from 2009 to 2016: overview of the results and main achievements. Food Control. 2017;82:101–13.