Further improvement of Alzer–Fonseca–Kovačec’s type inequalities via weak sub-majorization with applications

Advances in Operator Theory - Tập 9 Số 1 - 2024
Zakaria Taki1, Mohamed Amine Ighachane2, Duong Quoc Huy3, Doan Thi Thuy Van3
1Department of Mathematics, Faculty of Sciences-Semlalia, University Cadi Ayyad, Av. Prince My. Abdellah, BP: 2390, 40.000, Marrakech, Morocco
2Sciences and Technologies Team (ESTE), Higher School of Education and Training, Chouaib Doukkali University, El Jadida, Morocco
3Department of Mathematics, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, Dak Lak, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akkouchi, M., Ighachane, M.A.: A new proof of a refined Young inequality. Bull. Int. Math. Virtual Inst. 10(3), 4255–4258 (2020)

Al-Manasrah, Y., Kittaneh, F.: Further generalizations, refinements, and reverses of the Young and Heinz inequalities. Results Math. 71(3–4), 1063–1072 (2017)

Al-Manasrah, Y., Kittaneh, F.: A generalization of two refined Young inequalities. Positivity 19(4), 757–768 (2015)

Alzer, H., Fonseca, C.M., Kovačec, A.: Young-type inequalities and their matrix analogues. Linear Multilinear Algebra 63(3), 622–635 (2015)

Dragomir, S.S.: Trace inequalities for positive operators via recent refinements and reverses of Young’s inequality. Spec. Matrices 6, 180–192 (2018)

Fuglede, B., Kadison, R.V.: On determinants and a property of the trace in finite factors. Proc. Natl. Acad. Sci. USA 37, 425–431 (1951)

Fuglede, B., Kadison, R.V.: Determinant theory in finite factors. Ann. Math. 55(2), 520–530 (1952)

Han, Y.: Some determinant inequalities for operators. Linear Multilinear Algebra 67(1), 94–105 (2019)

Hirzallah, O., Kittaneh, F.: Matrix Young inequalities for the Hilbert–Schmidt norm. Linear Algebra Appl. 308(1–3), 77–84 (2000)

Huy, D.Q., Van, D.T.T., Xinh, D.T.: Some generalizations of real power form for Young-type inequalities and their applications. Linear Algebra Appl. 656, 368–384 (2023)

Ighachane, M.A.: Multiple-term refinements of Alzer–Fonseca–Kovačec inequalities. Rocky Mt. J. Math. 52(6), 2053–2070 (2022)

Ighachane, M.A., Akkouchi, M., Benabdi, E.H.: Further refinement of Alzer–Fonseca–Kovačec’s inequalities and applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(3) (2021). Paper No. 152

Ighachane, M.A., Taki, Z., Bouchangour, M.: An improvement of Alzer–Fonseca–Kovačec’s type inequalities with applications. Filomat 37(22), 7383–7399 (2023)

Kittaneh, F., Al-Manasrah, Y.: Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 361(1), 262–269 (2010)

Kittaneh, F., Manasrah, Y.: Reverse Young and Heinz inequalities for matrices. Linear Multilinear Algebra 59(9), 1031–1037 (2011)

Kórus, P.: A refinement of Young’s inequality. Acta Math. Hung. 153(2), 430–435 (2017)

Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics, 2nd edn. Springer, New York (2011)

Pečarić, J., Furuta, T., Mićić, T., Seo, T.: Mond–Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. ELEMENT, Zagreb (2005)

Pisier, G., Xu, Q.: Non-commutative $$L_{p}$$ Spaces, Handbook of the Geometry of Banach Spaces, vol. 2. North-Holland, Amsterdam (2003)

Rashid, M.H.M., Bani-Ahmad, F.: New versions of refinements and reverses of Young-type inequalities with the Kantorovich constant. Spec. Matrices 11 (2023). Paper No. 2022-0180, 23 p

Shao, J.: Generalization of refined Young inequalities and reverse inequalities for $$\tau $$-measurable operators. Linear Multilinear Algebra 68(10), 2099–2109 (2020)

Tohyama, H., Kamei, E., Watanabe, M.: Operator inequalities related to Youngś inequality. Adv. Oper. Theory 7(4) (2022). Paper No. 55, 9 p

Zhou, J., Wang, Y., Wu, T.: A Schwarz inequality for $$\tau $$-measurable operators $$A^{\ast }XB^{\ast }$$. J. Xinjiang Univ. Nat. Sci. 1, 69–73 (2009)