Further improvement of Alzer–Fonseca–Kovačec’s type inequalities via weak sub-majorization with applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akkouchi, M., Ighachane, M.A.: A new proof of a refined Young inequality. Bull. Int. Math. Virtual Inst. 10(3), 4255–4258 (2020)
Al-Manasrah, Y., Kittaneh, F.: Further generalizations, refinements, and reverses of the Young and Heinz inequalities. Results Math. 71(3–4), 1063–1072 (2017)
Al-Manasrah, Y., Kittaneh, F.: A generalization of two refined Young inequalities. Positivity 19(4), 757–768 (2015)
Alzer, H., Fonseca, C.M., Kovačec, A.: Young-type inequalities and their matrix analogues. Linear Multilinear Algebra 63(3), 622–635 (2015)
Dragomir, S.S.: Trace inequalities for positive operators via recent refinements and reverses of Young’s inequality. Spec. Matrices 6, 180–192 (2018)
Fuglede, B., Kadison, R.V.: On determinants and a property of the trace in finite factors. Proc. Natl. Acad. Sci. USA 37, 425–431 (1951)
Han, Y.: Some determinant inequalities for operators. Linear Multilinear Algebra 67(1), 94–105 (2019)
Hirzallah, O., Kittaneh, F.: Matrix Young inequalities for the Hilbert–Schmidt norm. Linear Algebra Appl. 308(1–3), 77–84 (2000)
Huy, D.Q., Van, D.T.T., Xinh, D.T.: Some generalizations of real power form for Young-type inequalities and their applications. Linear Algebra Appl. 656, 368–384 (2023)
Ighachane, M.A.: Multiple-term refinements of Alzer–Fonseca–Kovačec inequalities. Rocky Mt. J. Math. 52(6), 2053–2070 (2022)
Ighachane, M.A., Akkouchi, M., Benabdi, E.H.: Further refinement of Alzer–Fonseca–Kovačec’s inequalities and applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(3) (2021). Paper No. 152
Ighachane, M.A., Taki, Z., Bouchangour, M.: An improvement of Alzer–Fonseca–Kovačec’s type inequalities with applications. Filomat 37(22), 7383–7399 (2023)
Kittaneh, F., Al-Manasrah, Y.: Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 361(1), 262–269 (2010)
Kittaneh, F., Manasrah, Y.: Reverse Young and Heinz inequalities for matrices. Linear Multilinear Algebra 59(9), 1031–1037 (2011)
Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics, 2nd edn. Springer, New York (2011)
Pečarić, J., Furuta, T., Mićić, T., Seo, T.: Mond–Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. ELEMENT, Zagreb (2005)
Pisier, G., Xu, Q.: Non-commutative $$L_{p}$$ Spaces, Handbook of the Geometry of Banach Spaces, vol. 2. North-Holland, Amsterdam (2003)
Rashid, M.H.M., Bani-Ahmad, F.: New versions of refinements and reverses of Young-type inequalities with the Kantorovich constant. Spec. Matrices 11 (2023). Paper No. 2022-0180, 23 p
Shao, J.: Generalization of refined Young inequalities and reverse inequalities for $$\tau $$-measurable operators. Linear Multilinear Algebra 68(10), 2099–2109 (2020)
Tohyama, H., Kamei, E., Watanabe, M.: Operator inequalities related to Youngś inequality. Adv. Oper. Theory 7(4) (2022). Paper No. 55, 9 p
Zhou, J., Wang, Y., Wu, T.: A Schwarz inequality for $$\tau $$-measurable operators $$A^{\ast }XB^{\ast }$$. J. Xinjiang Univ. Nat. Sci. 1, 69–73 (2009)