Phát triển thêm của mô hình vận chuyển đa pha cho các vụ va chạm hạt nhân tương đối
Tóm tắt
Một mô hình vận chuyển đa pha (AMPT) đã được xây dựng như một mô tả tự chứa dựa trên lý thuyết động lực học cho các vụ va chạm hạt nhân tương đối, bao gồm bốn thành phần chính: điều kiện ban đầu biến đổi, một chuỗi phần tán xạ, quá trình kết hợp hạt, và một chuỗi hạt. Trong bài báo này, chúng tôi sẽ xem xét những phát triển chính sau lần phát hành công khai đầu tiên của mã nguồn AMPT vào năm 2004 và bản xuất bản tương ứng mô tả chi tiết vật lý của mô hình vào thời điểm đó. Chúng tôi cũng thảo luận về những hướng đi có thể cho sự phát triển trong tương lai của mô hình AMPT để nghiên cứu tốt hơn các tính chất của vật chất đặc được tạo ra trong các vụ va chạm tương đối của các hệ thống nhỏ hoặc lớn.
Từ khóa
Tài liệu tham khảo
T.D. Lee, G.C. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory. Phys. Rev. D 9, 2291–2316 (1974). https://doi.org/10.1103/PhysRevD.9.2291
E.V. Shuryak, Quark-gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. B 78, 150 (1978). https://doi.org/10.1016/0370-2693(78)90370-2
I. Arsene et al. [BRAHMS], Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.130
B.B. Back et al. [PHOBOS], The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.084
J. Adams et al. [STAR], Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085
K. Adcox et al. [PHENIX], Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086
U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123–151 (2013). https://doi.org/10.1146/annurev-nucl-102212-170540
W. Busza, K. Rajagopal, W. van der Schee, Heavy ion collisions: the big picture, and the big questions. Ann. Rev. Nucl. Part. Sci. 68, 339–376 (2018). https://doi.org/10.1146/annurev-nucl-101917-020852
M. Gyulassy, L. McLerran, New forms of QCD matter discovered at RHIC. Nucl. Phys. A 750, 30–63 (2005). https://doi.org/10.1016/j.nuclphysa.2004.10.034
S.A. Bass, M. Belkacem, M. Bleicher et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998). https://doi.org/10.1016/S0146-6410(98)00058-1
B. Zhang, C.M. Ko, B.A. Li et al., A multiphase transport model for nuclear collisions at RHIC. Phys. Rev. C 61, 067901 (2000). https://doi.org/10.1103/PhysRevC.61.067901
Z. Xu, C. Greiner, Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body interactions in a parton cascade. Phys. Rev. C 71, 064901 (2005). https://doi.org/10.1103/PhysRevC.71.064901
Z.W. Lin, C.M. Ko, B.A. Li et al., A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). https://doi.org/10.1103/PhysRevC.72.064901
W. Cassing, E.L. Bratkovskaya, Parton-Hadron-String Dynamics: an off-shell transport approach for relativistic energies. Nucl. Phys. A 831, 215–242 (2009). https://doi.org/10.1016/j.nuclphysa.2009.09.007
P. Huovinen, P.F. Kolb, U.W. Heinz et al., Radial and elliptic flow at RHIC: Further predictions. Phys. Lett. B 503, 58–64 (2001). https://doi.org/10.1016/S0370-2693(01)00219-2
B. Betz, J. Noronha, G. Torrieri et al., Universality of the diffusion wake from stopped and punch-through jets in heavy-ion collisions. Phys. Rev. C 79, 034902 (2009). https://doi.org/10.1103/PhysRevC.79.034902
B. Schenke, S. Jeon, C. Gale, Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics. Phys. Rev. Lett. 106, 042301 (2011). https://doi.org/10.1103/PhysRevLett.106.042301
P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies. Phys. Rev. C 85, 014911 (2012). https://doi.org/10.1103/PhysRevC.85.014911
H. Petersen, J. Steinheimer, G. Burau et al., A fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Phys. Rev. C 78, 044901 (2008). https://doi.org/10.1103/PhysRevC.78.044901
K. Werner, I. Karpenko, T. Pierog et al., Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultrarelativistic heavy ion collisions. Phys. Rev. C 82, 044904 (2010). https://doi.org/10.1103/PhysRevC.82.044904
H. Song, S.A. Bass, U. Heinz et al., 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid. Phys. Rev. Lett. 106, 192301 (2011). https://doi.org/10.1103/PhysRevLett.106.192301. [erratum: Phys. Rev. Lett. 109, 139904 (2012). https://doi.org/10.1103/PhysRevLett.109.139904]
Z.W. Lin, S. Pal, C.M. Ko et al., Charged particle rapidity distributions at relativistic energies. Phys. Rev. C 64, 011902 (2001). https://doi.org/10.1103/PhysRevC.64.011902
X.N. Wang, M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 44, 3501–3516 (1991). https://doi.org/10.1103/PhysRevD.44.3501
M. Gyulassy, X.N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions. Comput. Phys. Commun. 83, 307 (1994). https://doi.org/10.1016/0010-4655(94)90057-4
T. Sjostrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74–90 (1994). https://doi.org/10.1016/0010-4655(94)90132-5
Z.W. Lin, C.M. Ko, Partonic effects on the elliptic flow at RHIC. Phys. Rev. C 65, 034904 (2002). https://doi.org/10.1103/PhysRevC.65.034904
Z.W. Lin, Evolution of transverse flow and effective temperatures in the parton phase from a multi-phase transport model. Phys. Rev. C 90(1), 014904 (2014). https://doi.org/10.1103/PhysRevC.90.014904
D. Molnar, S.A. Voloshin, Elliptic flow at large transverse momenta from quark coalescence. Phys. Rev. Lett. 91, 092301 (2003). https://doi.org/10.1103/PhysRevLett.91.092301
D. Molnar, How AMPT generates large elliptic flow with small cross sections. arXiv:1906.12313 [nucl-th]
A. Bzdak, G.L. Ma, Elliptic and triangular flow in $$p$$+Pb and peripheral Pb+Pb collisions from parton scatterings. Phys. Rev. Lett. 113(25), 252301 (2014). https://doi.org/10.1103/PhysRevLett.113.252301
G.L. Ma, Z.W. Lin, Predictions for $$\sqrt{s_{nn}}=5.02$$ TeV Pb+Pb collisions from a multi-phase transport model. Phys. Rev. C 93(5), 054911 (2016). https://doi.org/10.1103/PhysRevC.93.054911
Y. He, Z.W. Lin, Improved quark coalescence for a multi-phase transport model. Phys. Rev. C 96(1), 014910 (2017). https://doi.org/10.1103/PhysRevC.96.014910
L.Y. Zhang, J.H. Chen, Z.W. Lin et al., Two-particle angular correlations in $$pp$$ and $$p$$-Pb collisions at energies available at the CERN Large Hadron Collider from a multiphase transport model. Phys. Rev. C 98(3), 034912 (2018). https://doi.org/10.1103/PhysRevC.98.034912
B. Alver, G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905 (2010). https://doi.org/10.1103/PhysRevC.81.054905. [erratum: Phys. Rev. C 82, 039903 (2010). https://doi.org/10.1103/PhysRevC.82.039903]
Y. Jiang, Z.W. Lin, J. Liao, Rotating quark-gluon plasma in relativistic heavy ion collisions. Phys. Rev. C 94(4), 044910 (2016). https://doi.org/10.1103/PhysRevC.94.044910. [erratum: Phys. Rev. C 95(4), 049904 (2017). https://doi.org/10.1103/PhysRevC.95.049904]
H. Li, L.G. Pang, Q. Wang et al., Global $$\Lambda $$ polarization in heavy-ion collisions from a transport model. Phys. Rev. C 96(5), 054908 (2017). https://doi.org/10.1103/PhysRevC.96.054908
S. Lan, Z.W. Lin, S. Shi et al., Effects of finite coverage on global polarization observables in heavy ion collisions. Phys. Lett. B 780, 319–324 (2018). https://doi.org/10.1016/j.physletb.2018.02.076
B.I. Abelev et al., [STAR], Systematic measurements of identified particle spectra in $$pp, d+$$ Au and Au+Au collisions from STAR. Phys. Rev. C 79, 034909 (2009). https://doi.org/10.1103/PhysRevC.79.034909
J.Y. Ollitrault, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46, 229–245 (1992). https://doi.org/10.1103/PhysRevD.46.229
C. Gale, S. Jeon, B. Schenke, Hydrodynamic modeling of heavy-ion collisions. Int. J. Mod. Phys. A 28, 1340011 (2013). https://doi.org/10.1142/S0217751X13400113
H. Li, L. He, Z.W. Lin et al., Origin of the mass splitting of elliptic anisotropy in a multiphase transport model. Phys. Rev. C 93(5), 051901 (2016). https://doi.org/10.1103/PhysRevC.93.051901
H. Li, L. He, Z.W. Lin et al., Origin of the mass splitting of azimuthal anisotropies in a multiphase transport model. Phys. Rev. C 96(1), 014901 (2017). https://doi.org/10.1103/PhysRevC.96.014901
D. Molnar, M. Gyulassy, Saturation of elliptic flow and the transport opacity of the gluon plasma at RHIC. Nucl. Phys. A 697, 495–520 (2002). https://doi.org/10.1016/S0375-9474(01)01224-6. [erratum: Nucl. Phys. A 703, 893–894 (2002). https://doi.org/10.1016/S0375-9474(02)00859-X]
V. Khachatryan et al. [CMS], Observation of long-range near-side angular correlations in proton-proton collisions at the LHC. JHEP 09, 091 (2010). https://doi.org/10.1007/JHEP09(2010)091
A. Adare et al. [PHENIX], Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central $$d+$$Au collisions at $$\sqrt{s_{_{NN}}}$$=200 GeV. Phys. Rev. Lett. 114(19), 192301 (2015). https://doi.org/10.1103/PhysRevLett.114.192301
C. Aidala et al. [PHENIX], Creation of quark–gluon plasma droplets with three distinct geometries. Nature Phys. 15(3), 214–220 (2019). https://doi.org/10.1038/s41567-018-0360-0
P. Bozek, Elliptic flow in proton-proton collisions at $$\surd(S) = 7$$ TeV. Eur. Phys. J. C 71, 1530 (2011). https://doi.org/10.1140/epjc/s10052-010-1530-0
P. Bozek, W. Broniowski, Correlations from hydrodynamic flow in p-Pb collisions. Phys. Lett. B 718, 1557–1561 (2013). https://doi.org/10.1016/j.physletb.2012.12.051
L. He, T. Edmonds, Z.W. Lin et al., Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models. Phys. Lett. B 753, 506–510 (2016). https://doi.org/10.1016/j.physletb.2015.12.051
Z.W. Lin, L. He, T. Edmonds et al., Elliptic anisotropy $$v_2$$ may be dominated by particle escape instead of hydrodynamic flow. Nucl. Phys. A 956, 316–319 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.017
A. Kurkela, U.A. Wiedemann, B. Wu, Nearly isentropic flow at sizeable $$\eta /s$$. Phys. Lett. B 783, 274–279 (2018). https://doi.org/10.1016/j.physletb.2018.06.064
U.W. Heinz, J.S. Moreland, Hydrodynamic flow in small systems or: “How the heck is it possible that a system emitting only a dozen particles can be described by fluid dynamics?” J. Phys. Conf. Ser. 1271(1), 012018 (2019). https://doi.org/10.1088/1742-6596/1271/1/012018
B. Schenke, The smallest fluid on earth. Rept. Prog. Phys. 84, 082301 (2021).https://doi.org/10.1088/1361-6633/ac14c9
K. Dusling, M. Mace, R. Venugopalan, Multiparticle collectivity from initial state correlations in high energy proton-nucleus collisions. Phys. Rev. Lett. 120(4), 042002 (2018). https://doi.org/10.1103/PhysRevLett.120.042002
M. Mace, V.V. Skokov, P. Tribedy et al., Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the color glass condensate. Phys. Rev. Lett. 121(5), 052301 (2018). https://doi.org/10.1103/PhysRevLett.121.052301. [erratum: Phys. Rev. Lett. 123(3), 039901 (2019). https://doi.org/10.1103/PhysRevLett.123.039901]
R.D. Weller, P. Romatschke, One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at $$\sqrt{s}=5.02$$ TeV. Phys. Lett. B 774, 351–356 (2017). https://doi.org/10.1016/j.physletb.2017.09.077
A. Kurkela, U.A. Wiedemann, B. Wu, Flow in AA and pA as an interplay of fluid-like and non-fluid like excitations. Eur. Phys. J. C 79(11), 965 (2019). https://doi.org/10.1140/epjc/s10052-019-7428-6
R.A. Lacey [STAR], Long-range collectivity in small collision-systems with two- and four-particle correlations @ STAR. Nucl. Phys. A 1005, 122041 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122041
U.A. Acharya et al. [PHENIX], Kinematic dependence of azimuthal anisotropies in $$p$$$$+$$ Au, $$d$$$$+$$ Au, $$^3$$He $$+$$ Au at $$\sqrt{s_{_{NN}}}$$ = 200 GeV. arXiv:2107.06634 [hep-ex]
The Open Standard Codes and Routines (OSCAR) project at https://karman.physics.purdue.edu/OSCAR-old/
Source codes of various AMPT versions are available at http://myweb.ecu.edu/linz/ampt/
B.I. Abelev et al. [STAR], Observation of an antimatter hypernucleus. Science 328, 58–62 (2010). https://doi.org/10.1126/science.1183980
N. Sharma [ALICE], Production of nuclei and antinuclei in pp and Pb-Pb collisions with ALICE at the LHC. J. Phys. G 38, 124189 (2011). https://doi.org/10.1088/0954-3899/38/12/124189
K.J. Sun, L.W. Chen, C.M. Ko et al., Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions. Phys. Lett. B 774, 103–107 (2017). https://doi.org/10.1016/j.physletb.2017.09.056
E. Shuryak, J.M. Torres-Rincon, Baryon clustering at the critical line and near the hypothetical critical point in heavy-ion collisions. Phys. Rev. C 100(2), 024903 (2019). https://doi.org/10.1103/PhysRevC.100.024903
A. Bzdak, S. Esumi, V. Koch et al., Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rept. 853, 1–87 (2020). https://doi.org/10.1016/j.physrep.2020.01.005
X. Luo, S. Shi, N. Xu et al., A study of the properties of the QCD phase diagram in high-energy nuclear collisions. Particles 3(2), 278–307 (2020). https://doi.org/10.3390/particles3020022
J. Cleymans, H. Satz, Thermal hadron production in high-energy heavy ion collisions. Z. Phys. C 57, 135–148 (1993). https://doi.org/10.1007/BF01555746
P. Braun-Munzinger, V. Koch, T. Schäfer et al., Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rept. 621, 76–126 (2016). https://doi.org/10.1016/j.physrep.2015.12.003
H. Sato, K. Yazaki, On the coalescence model for high-energy nuclear reactions. Phys. Lett. B 98, 153–157 (1981). https://doi.org/10.1016/0370-2693(81)90976-X
L.P. Csernai, J.I. Kapusta, Entropy and cluster production in nuclear collisions. Phys. Rept. 131, 223–318 (1986). https://doi.org/10.1016/0370-1573(86)90031-1
H.H. Gutbrod, A. Sandoval, P.J. Johansen et al., Final state interactions in the production of hydrogen and helium isotopes by relativistic heavy ions on uranium. Phys. Rev. Lett. 37, 667–670 (1976). https://doi.org/10.1103/PhysRevLett.37.667
L. Zhu, C.M. Ko, X. Yin, Light (anti-)nuclei production and flow in relativistic heavy-ion collisions. Phys. Rev. C 92(6), 064911 (2015). https://doi.org/10.1103/PhysRevC.92.064911
K.J. Sun, L.W. Chen, Analytical coalescence formula for particle production in relativistic heavy-ion collisions. Phys. Rev. C 95(4), 044905 (2017). https://doi.org/10.1103/PhysRevC.95.044905
P. Danielewicz, G.F. Bertsch, Production of deuterons and pions in a transport model of energetic heavy ion reactions. Nucl. Phys. A 533, 712–748 (1991). https://doi.org/10.1016/0375-9474(91)90541-D
Y. Oh, C.M. Ko, Elliptic flow of deuterons in relativistic heavy-ion collisions. Phys. Rev. C 76, 054910 (2007). https://doi.org/10.1103/PhysRevC.76.054910
Y. Oh, Z.W. Lin, C.M. Ko, Deuteron production and elliptic flow in relativistic heavy ion collisions. Phys. Rev. C 80, 064902 (2009). https://doi.org/10.1103/PhysRevC.80.064902
R.M. Heinz, O.E. Overseth, D.E. Pellett et al., Differential Cross Sections for p+p -$$>$$ d+pi+ from 1 to 3 BeV. Phys. Rev. 167, 1232–1239 (1968). https://doi.org/10.1103/PhysRev.167.1232
H.L. Anderson, D.A. Larson, L.C. Myrianthopoulos et al., Measurements of the differential cross-section of the reaction p p $$\rightarrow$$ d pi+ from 3.0 to 5.0 gev/c. Phys. Rev. D 9, 580–596 (1974). https://doi.org/10.1103/PhysRevD.9.580
F. Shimizu, Y. Kubota, H. Koiso et al., Measurement of the $$pp$$ cross-sections in the momentum range 0.9-2.0 GeV/c. Nucl. Phys. A 386, 571–588 (1982). https://doi.org/10.1016/0375-9474(82)90037-9
J. Boswell, R. Altemus, R. Minehart et al., Differential cross-section for the pi+ d $$\rightarrow$$ p p reaction from 80-MeV to 417-MeV. Phys. Rev. C 25, 2540–2549 (1982). https://doi.org/10.1103/PhysRevC.25.2540
M.Ja. Borkowski, V.G. Gaditsky, G.E. Gavrilov et al., Measurement of the differential cross-sections for the pi+ d $$\rightarrow$$ p p reaction at pion energies of 280-MeV, 300-MeV, 330-MeV, 357-MeV, 390-MeV, 420-MeV and 450-MeV. J. Phys. G 11, 69–83 (1985). https://doi.org/10.1088/0305-4616/11/1/012
S.I. Gogolev, M.G. Gornov, M.I. Gostkin et al., Total cross-section of the reaction pi+ d $$\rightarrow$$ p p at pion energies 26-MeV to 40-MeV. Phys. Lett. B 300, 24–28 (1993). https://doi.org/10.1016/0370-2693(93)90742-Z
B.A. Li, C.M. Ko, Formation of superdense hadronic matter in high-energy heavy ion collisions. Phys. Rev. C 52, 2037–2063 (1995). https://doi.org/10.1103/PhysRevC.52.2037
B.A. Li, C.M. Ko, Excitation functions in central Au + Au collisions from SIS / GSI to AGS Brookhaven. Nucl. Phys. A 601, 457–472 (1996). https://doi.org/10.1016/0375-9474(96)00037-1
B. Li, A.T. Sustich, B. Zhang et al., Studies of superdense hadronic matter in a relativistic transport model. Int. J. Mod. Phys. E 10, 267–352 (2001). https://doi.org/10.1142/S0218301301000575
R.A. Arndt, I.I. Strakovsky, R.L. Workman et al., Analysis of the reaction pi+ d $$\rightarrow$$ p p to 500-MeV. Phys. Rev. C 48, 1926–1938 (1993). https://doi.org/10.1103/PhysRevC.49.1229
M. Gyulassy, K. Frankel, E.A. Remler, Deuteron formation in nuclear collisions. Nucl. Phys. A 402, 596–611 (1983). https://doi.org/10.1016/0375-9474(83)90222-1
D. Oliinychenko, L.G. Pang, H. Elfner, V. Koch, Microscopic study of deuteron production in PbPb collisions at $$\sqrt{s} = 2.76 TeV$$ via hydrodynamics and a hadronic afterburner. Phys. Rev. C 99(4), 044907 (2019). https://doi.org/10.1103/PhysRevC.99.044907
K.J. Sun, C.M. Ko, Z.W. Lin, Light nuclei production in a multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 103(6), 064909 (2021). https://doi.org/10.1103/PhysRevC.103.064909
K.J. Sun, C.M. Ko, B. Dönigus, Suppression of light nuclei production in collisions of small systems at the Large Hadron Collider. Phys. Lett. B 792, 132–137 (2019). https://doi.org/10.1016/j.physletb.2019.03.033
B. Andersson, G. Gustafson, B. Soderberg, A general model for jet fragmentation. Z. Phys. C 20, 317 (1983). https://doi.org/10.1007/BF01407824
B. Andersson, G. Gustafson, G. Ingelman et al., Parton fragmentation and string dynamics. Phys. Rept. 97, 31–145 (1983). https://doi.org/10.1016/0370-1573(83)90080-7
Z.W. Lin, C.M. Ko, S. Pal, Partonic effects on pion interferometry at RHIC. Phys. Rev. Lett. 89, 152301 (2002). https://doi.org/10.1103/PhysRevLett.89.152301
J. Xu, C.M. Ko, Pb-Pb collisions at $$\sqrt{s_{NN}}=2.76$$ TeV in a multiphase transport model. Phys. Rev. C 83, 034904 (2011). https://doi.org/10.1103/PhysRevC.83.034904
J.S. Schwinger, Gauge invariance and mass. II. Phys. Rev. 128, 2425–2429 (1962). https://doi.org/10.1103/PhysRev.128.2425
A. Adare et al. [PHENIX],Neutral pion production with respect to centrality and reaction plane in Au$$+$$Au collisions at $$\sqrt{s_{NN}}$$=200 GeV. Phys. Rev. C 87(3), 034911 (2013). https://doi.org/10.1103/PhysRevC.87.034911
B. Abelev et al. [ALICE], Centrality determination of Pb-Pb collisions at $$\sqrt{s_{NN}}$$ = 2.76 TeV with ALICE. Phys. Rev. C 88(4), 044909 (2013). https://doi.org/10.1103/PhysRevC.88.044909
S.S. Adler et al. [PHENIX], Identified charged particle spectra and yields in Au+Au collisions at S(NN)**1/2 = 200-GeV. Phys. Rev. C 69, 034909 (2004). https://doi.org/10.1103/PhysRevC.69.034909
I.G. Bearden et al. [BRAHMS], Charged meson rapidity distributions in central Au+Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett. 94, 162301 (2005). https://doi.org/10.1103/PhysRevLett.94.162301
B. Abelev et al. [ALICE], Centrality dependence of $$\pi $$, K, p production in Pb-Pb collisions at $$\sqrt{s_{NN}}$$ = 2.76 TeV. Phys. Rev. C 88, 044910 (2013). https://doi.org/10.1103/PhysRevC.88.044910
Y. Gu [PHENIX], PHENIX measurements of higher-order flow harmonics for identified charged hadrons in Au+Au collisions at $$\sqrt{s_{NN}}=39-200$$ GeV. Nucl. Phys. A 904-905, 353c-356c (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.022
G. Aad et al. [ATLAS], Measurement of the azimuthal anisotropy for charged particle production in $$\sqrt{s_{NN}}=2.76$$ TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 86, 014907 (2012). https://doi.org/10.1103/PhysRevC.86.014907
S. Chatrchyan et al. [CMS], Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at $$\sqrt{s}_{NN}$$=2.76 TeV. Phys. Rev. C 87(1), 014902 (2013). https://doi.org/10.1103/PhysRevC.87.014902
G. Aad et al. [ATLAS], Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at $$\sqrt{s_{\text{NN}}}=2.76$$ TeV with the ATLAS detector. Eur. Phys. J. C 74(8), 2982 (2014). https://doi.org/10.1140/epjc/s10052-014-2982-4
B.B. Back et al. [PHOBOS], Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. C 72, 051901 (2005). https://doi.org/10.1103/PhysRevC.72.051901
V. Khachatryan et al. [CMS], Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions. Phys. Rev. C 92(3), 034911 (2015). https://doi.org/10.1103/PhysRevC.92.034911
L.G. Pang, H. Petersen, G.Y. Qin et al., Decorrelation of anisotropic flow along the longitudinal direction. Eur. Phys. J. A 52(4), 97 (2016). https://doi.org/10.1140/epja/i2016-16097-x
B. Zhang, ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193–206 (1998). https://doi.org/10.1016/S0010-4655(98)00010-1
V. Minissale, F. Scardina, V. Greco, Hadrons from coalescence plus fragmentation in AA collisions at energies available at the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider. Phys. Rev. C 92(5), 054904 (2015). https://doi.org/10.1103/PhysRevC.92.054904
K.C. Han, R.J. Fries, C.M. Ko, Jet fragmentation via recombination of parton showers. Phys. Rev. C 93(4), 045207 (2016). https://doi.org/10.1103/PhysRevC.93.045207
Y. He, Z.W. Lin, Baryon spectra and antiparticle-to-particle ratios from the improved AMPT model. EPJ Web Conf. 171, 14004 (2018). https://doi.org/10.1051/epjconf/201817114004
L.Y. Zhang, J.H. Chen, Z.W. Lin et al., Two-particle angular correlations in heavy ion collisions from a multiphase transport model. Phys. Rev. C 99(5), 054904 (2019). https://doi.org/10.1103/PhysRevC.99.054904
C. Suire [STAR], Omega- and anti-Omega+ production in Au+Au collisions at s(NN)**(1/2) = 130-GeV and 200-GeV. Nucl. Phys. A 715, 470–4735 (2003). https://doi.org/10.1016/S0375-9474(02)01451-3
J. Adams et al. [STAR], Scaling properties of hyperon production in Au+Au Collisions at s**(1/2) = 200-GeV. Phys. Rev. Lett. 98, 062301 (2007). https://doi.org/10.1103/PhysRevLett.98.062301
S. Schuchmann, Modification of $$K^{0}_{s}$$ and $$\Lambda ({\overline{\Lambda }})$$ transverse momentum spectra in Pb-Pb collisions at $$\sqrt{^{s}NN}$$ = 2.76 TeV with ALICE. https://doi.org/10.1007/978-3-319-43458-2
B. B. Abelev et al. [ALICE], Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at $$\sqrt{s_{NN}}$$ = 2.76 TeV. Phys. Lett. B 728, 216–227 (2014). https://doi.org/10.1016/j.physletb.2013.11.048. [erratum: Phys. Lett. B 734, 409–410 (2014). https://doi.org/10.1016/j.physletb.2014.05.052]
J. Zimanyi, T.S. Biro, T. Csorgo et al., Quark liberation and coalescence at CERN SPS. Phys. Lett. B 472, 243–246 (2000). https://doi.org/10.1016/S0370-2693(99)01461-6
C. Zhang, L. Zheng, F. Liu et al., Update of a multiphase transport model with modern parton distribution functions and nuclear shadowing. Phys. Rev. C 99(6), 064906 (2019). https://doi.org/10.1103/PhysRevC.99.064906
C. Nonaka, B. Muller, S.A. Bass et al., Possible resolutions of the D-paradox. Phys. Rev. C 71, 051901 (2005). https://doi.org/10.1103/PhysRevC.71.051901
V. Greco, Phase-space coalescence for heavy and light quarks at RHIC. Eur. Phys. J. ST 155, 45–59 (2008). https://doi.org/10.1140/epjst/e2008-00588-y
L. Zheng, C. Zhang, S.S. Shi et al., Improvement of heavy flavor production in a multiphase transport model updated with modern nuclear parton distribution functions. Phys. Rev. C 101(3), 034905 (2020). https://doi.org/10.1103/PhysRevC.101.034905
T. Shao, J. Chen, C.M. Ko et al., Enhanced production of strange baryons in high-energy nuclear collisions from a multiphase transport model. Phys. Rev. C 102(1), 014906 (2020). https://doi.org/10.1103/PhysRevC.102.014906
Z.W. Lin, Extension of the Bjorken energy density formula of the initial state for relativistic heavy ion collisions. Phys. Rev. C 98(3), 034908 (2018). https://doi.org/10.1103/PhysRevC.98.034908
T. Mendenhall, Z.W. Lin, Calculating the initial energy density in heavy ion collisions by including the finite nuclear thickness. Phys. Rev. C 103(2), 024907 (2021). https://doi.org/10.1103/PhysRevC.103.024907
M. Okai, K. Kawaguchi, Y. Tachibana et al., New approach to initializing hydrodynamic fields and mini-jet propagation in quark-gluon fluids. Phys. Rev. C 95(5), 054914 (2017). https://doi.org/10.1103/PhysRevC.95.054914
C. Shen, G. Denicol, C. Gale et al., A hybrid approach to relativistic heavy-ion collisions at the RHIC BES energies. Nucl. Phys. A 967, 796–799 (2017). https://doi.org/10.1016/j.nuclphysa.2017.06.008
J.D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140–151 (1983). https://doi.org/10.1103/PhysRevD.27.140
A web interface that calculates the average initial energy density at mid-pseudorapidity of central $$AA$$ collisions with the semi-analytical method of Ref. [125] is available at http://myweb.ecu.edu/linz/densities/
E. Eichten, I. Hinchliffe, K.D. Lane et al., Super collider physics. Rev. Mod. Phys. 56, 579–707 (1984). https://doi.org/10.1103/RevModPhys.56.579
T.K. Gaisser, F. Halzen, Soft hard scattering in the TeV range. Phys. Rev. Lett. 54, 1754 (1985). https://doi.org/10.1103/PhysRevLett.54.1754
G. Pancheri, Y.N. Srivastava, Low $$p_T$$ jets and the rise with energy of the inelastic cross-section. Phys. Lett. B 182, 199–207 (1986). https://doi.org/10.1016/0370-2693(86)91577-7
S. Forte, G. Watt, Progress in the determination of the partonic structure of the proton. Ann. Rev. Nucl. Part. Sci. 63, 291–328 (2013). https://doi.org/10.1146/annurev-nucl-102212-170607
A. De Roeck, R.S. Thorne, Structure functions. Prog. Part. Nucl. Phys. 66, 727–781 (2011). https://doi.org/10.1016/j.ppnp.2011.06.001
K. Kovařík, P.M. Nadolsky, D.E. Soper, Hadronic structure in high-energy collisions. Rev. Mod. Phys. 92(4), 045003 (2020). https://doi.org/10.1103/RevModPhys.92.045003
H.L. Lai, J. Huston, S. Mrenna et al., Parton distributions for event generators. JHEP 04, 035 (2010). https://doi.org/10.1007/JHEP04(2010)035
J.C. Collins, X.M. Zu, Parton distribution functions suitable for Monte Carlo event generators. JHEP 06, 018 (2002). https://doi.org/10.1088/1126-6708/2002/06/018
T. Kasemets, T. Sjostrand, A Comparison of new MC-adapted Parton Densities. Eur. Phys. J. C 69, 19–29 (2010). https://doi.org/10.1140/epjc/s10052-010-1391-6
D.W. Duke, J.F. Owens, Q**2 dependent parametrizations of parton distribution functions. Phys. Rev. D 30, 49–54 (1984). https://doi.org/10.1103/PhysRevD.30.49
Z.W. Lin, Current status and further improvements of a multi-phase transport (AMPT) model. Indian J. Phys. 85, 837–841 (2011). https://doi.org/10.1007/s12648-011-0086-7
J. Pumplin, D.R. Stump, J. Huston et al., New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). https://doi.org/10.1088/1126-6708/2002/07/012
W.T. Deng, X.N. Wang, R. Xu, Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider. Phys. Rev. C 83, 014915 (2011). https://doi.org/10.1103/PhysRevC.83.014915
M. Gluck, E. Reya, A. Vogt, Dynamical parton distributions of the proton and small x physics. Z. Phys. C 67, 433–448 (1995). https://doi.org/10.1007/BF01624586
K.J. Eskola, P. Paakkinen, H. Paukkunen et al., EPPS16: Nuclear parton distributions with LHC data. Eur. Phys. J. C 77(3), 163 (2017). https://doi.org/10.1140/epjc/s10052-017-4725-9
D. de Florian, R. Sassot, P. Zurita et al., Global analysis of nuclear parton distributions. Phys. Rev. D 85, 074028 (2012). https://doi.org/10.1103/PhysRevD.85.074028
K. Kovařík, A. Kusina, T. Ježo et al., nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework. Phys. Rev. D 93(8), 085037 (2016). https://doi.org/10.1103/PhysRevD.93.085037
M. Hirai, S. Kumano, T.H. Nagai, Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order. Phys. Rev. C 76, 065207 (2007). https://doi.org/10.1103/PhysRevC.76.065207
R. Abdul Khalek et al. [NNPDF], Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider. Eur. Phys. J. C 79(6), 471 (2019). https://doi.org/10.1140/epjc/s10052-019-6983-1
K.J. Eskola, Shadowing effects on quark and gluon production in ultrarelativistic heavy ion collisions. Z. Phys. C 51, 633–642 (1991). https://doi.org/10.1007/BF01565590
V. Emel‘yanov, A. Khodinov, S.R. Klein, R. Vogt, The Effect of shadowing on initial conditions, transverse energy and hard probes in ultrarelativistic heavy ion collisions. Phys. Rev. C 61, 044904 (2000). https://doi.org/10.1103/PhysRevC.61.044904
S.R. Klein, R. Vogt, Inhomogeneous shadowing effects on J/psi production in dA collisions. Phys. Rev. Lett. 91, 142301 (2003). https://doi.org/10.1103/PhysRevLett.91.142301
L. Frankfurt, V. Guzey, M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nuclei. Phys. Rept. 512, 255–393 (2012). https://doi.org/10.1016/j.physrep.2011.12.002
J.L. Nagle, A.D. Frawley, L.A.L. Levy et al., Theoretical modeling of J/psi yield modifications in proton (deuteron) - nucleus collisions at high energy. Phys. Rev. C 84, 044911 (2011). https://doi.org/10.1103/PhysRevC.84.044911
B. Wu, Factorization and transverse phase-space parton distributions. JHEP 07, 002 (2021). https://doi.org/10.1007/JHEP07(2021)002
I. Helenius, K.J. Eskola, H. Honkanen et al., Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes. JHEP 07, 073 (2012). https://doi.org/10.1007/JHEP07(2012)073
K.J. Eskola, V.J. Kolhinen, P.V. Ruuskanen, Scale evolution of nuclear parton distributions. Nucl. Phys. B 535, 351–371 (1998). https://doi.org/10.1016/S0550-3213(98)00589-6
K.J. Eskola, H. Paukkunen, C.A. Salgado, EPS09: A new generation of nlo and lo nuclear parton distribution functions. JHEP 04, 065 (2009). https://doi.org/10.1088/1126-6708/2009/04/065
X.N. Wang, Role of multiple mini-jets in high-energy hadronic reactions. Phys. Rev. D 43, 104–112 (1991). https://doi.org/10.1103/PhysRevD.43.104
L.D. McLerran, R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49, 2233–2241 (1994). https://doi.org/10.1103/PhysRevD.49.2233
C. Zhang, L. Zheng, S. Shi, Z.W. Lin, Using local nuclear scaling of initial condition parameters to improve the system size dependence of transport model descriptions of nuclear collisions. Phys. Rev. C. 104, 014908 (2021). https://doi.org/10.1103/PhysRevC.104.014908
B. Muller, X.N. Wang, Probing parton thermalization time with charm production. Phys. Rev. Lett. 68, 2437–2439 (1992). https://doi.org/10.1103/PhysRevLett.68.2437
Z.W. Lin, M. Gyulassy, Open charm as a probe of preequilibrium dynamics in nuclear collisions. Phys. Rev. C 51, 2177–2187 (1995). https://doi.org/10.1103/PhysRevC.51.2177. [erratum: Phys. Rev. C 52, 440 (1995). https://doi.org/10.1103/PhysRevC.52.440]
X. Dong, Y.J. Lee, R. Rapp, Open heavy-flavor production in heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 69, 417–445 (2019). https://doi.org/10.1146/annurev-nucl-101918-023806
S.K. Das, S. Plumari, S. Chatterjee et al., Directed flow of charm quarks as a witness of the initial strong magnetic field in ultra-relativistic heavy ion collisions. Phys. Lett. B 768, 260–264 (2017). https://doi.org/10.1016/j.physletb.2017.02.046
S. Chatterjee, P. Bożek, Large directed flow of open charm mesons probes the three dimensional distribution of matter in heavy ion collisions. Phys. Rev. Lett. 120(19), 192301 (2018). https://doi.org/10.1103/PhysRevLett.120.192301
M. Nasim, S. Singha, Directed flow of open charm in Au+Au collisions at $$\sqrt{s_{NN}}$$ = 200 GeV using a quark coalescence model. Phys. Rev. C 97(6), 064917 (2018). https://doi.org/10.1103/PhysRevC.97.064917
M. He, R.J. Fries, R. Rapp, $$ D_s $$-meson as quantitative probe of diffusion and hadronization in nuclear collisions. Phys. Rev. Lett. 110(11), 112301 (2013). https://doi.org/10.1103/PhysRevLett.110.112301
K. Huggins, R. Rapp, A T-Matrix calculation for in-medium heavy-quark gluon scattering. Nucl. Phys. A 896, 24–45 (2012). https://doi.org/10.1016/j.nuclphysa.2012.09.008
T. Lang, H. van Hees, J. Steinheimer et al., Heavy quark transport in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider within the UrQMD hybrid model. Phys. Rev. C 93(1), 014901 (2016). https://doi.org/10.1103/PhysRevC.93.014901
S.S. Cao, G. Coci, S.K. Das et al., Toward the determination of heavy-quark transport coefficients in quark-gluon plasma. Phys. Rev. C 99(5), 054907 (2019). https://doi.org/10.1103/PhysRevC.99.054907
Y.R. Xu, S.A. Bass, P. Moreau et al., Resolving discrepancies in the estimation of heavy quark transport coefficients in relativistic heavy-ion collisions. Phys. Rev. C 99(1), 014902 (2019). https://doi.org/10.1103/PhysRevC.99.014902
M.L. Mangano, P. Nason, G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B 373, 295–345 (1992). https://doi.org/10.1016/0550-3213(92)90435-E
B.A. Kniehl, G. Kramer, I. Schienbein et al., Inclusive D*+- production in p anti-p collisions with massive charm quarks. Phys. Rev. D 71, 014018 (2005). https://doi.org/10.1103/PhysRevD.71.014018
I. Helenius, H. Paukkunen, Revisiting the D-meson hadroproduction in general-mass variable flavour number scheme. JHEP 05, 196 (2018). https://doi.org/10.1007/JHEP05(2018)196
M. Cacciari, P. Nason, R. Vogt, QCD predictions for charm and bottom production at RHIC. Phys. Rev. Lett. 95, 122001 (2005). https://doi.org/10.1103/PhysRevLett.95.122001
M. Djordjevic, M. Djordjevic, Predictions of heavy-flavor suppression at 5.1 TeV Pb + Pb collisions at the CERN Large Hadron Collider. Phys. Rev. C 92(2), 024918 (2015). https://doi.org/10.1103/PhysRevC.92.024918
J. Xu, J. Liao, M. Gyulassy, Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0. JHEP 02, 169 (2016). https://doi.org/10.1007/JHEP02(2016)169
A. Beraudo, A. De Pace, M. Monteno et al., Heavy flavors in heavy-ion collisions: quenching, flow and correlations. Eur. Phys. J. C 75(3), 121 (2015). https://doi.org/10.1140/epjc/s10052-015-3336-6
M. He, R.J. Fries, R. Rapp, Heavy flavor at the large hadron collider in a strong coupling approach. Phys. Lett. B 735, 445–450 (2014). https://doi.org/10.1016/j.physletb.2014.05.050
S. Cao, G.Y. Qin, S.A. Bass, Energy loss, hadronization and hadronic interactions of heavy flavors in relativistic heavy-ion collisions. Phys. Rev. C 92(2), 024907 (2015). https://doi.org/10.1103/PhysRevC.92.024907
J. Uphoff, O. Fochler, Z. Xu et al., Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions. J. Phys. G 42(11), 115106 (2015). https://doi.org/10.1088/0954-3899/42/11/115106
S. Cao, T. Luo, G.Y. Qin et al., Heavy and light flavor jet quenching at RHIC and LHC energies. Phys. Lett. B 777, 255–259 (2018). https://doi.org/10.1016/j.physletb.2017.12.023
M. Nahrgang, J. Aichelin, P.B. Gossiaux et al., Influence of hadronic bound states above $$T_c$$ on heavy-quark observables in Pb + Pb collisions at at the CERN Large Hadron Collider. Phys. Rev. C 89(1), 014905 (2014). https://doi.org/10.1103/PhysRevC.89.014905
T. Song, H. Berrehrah, D. Cabrera et al., Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 93(3), 034906 (2016). https://doi.org/10.1103/PhysRevC.93.034906
S.K. Das, F. Scardina, S. Plumari et al., Toward a solution to the $$R_{AA}$$ and $$v_2$$ puzzle for heavy quarks. Phys. Lett. B 747, 260–264 (2015). https://doi.org/10.1016/j.physletb.2015.06.003
S. Plumari, V. Minissale, S.K. Das et al., Charmed Hadrons from Coalescence plus Fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC. Eur. Phys. J. C 78(4), 348 (2018). https://doi.org/10.1140/epjc/s10052-018-5828-7
B. Zhang, L.W. Chen, C.M. Ko, Charm elliptic flow at RHIC. Phys. Rev. C 72, 024906 (2005). https://doi.org/10.1103/PhysRevC.72.024906
H. Li, Z.W. Lin, F. Wang, Charm quarks are more hydrodynamic than light quarks in final-state elliptic flow. Phys. Rev. C 99(4), 044911 (2019). https://doi.org/10.1103/PhysRevC.99.044911
A. Kurkela, A. Mazeliauskas, J.F. Paquet et al., Matching the nonequilibrium initial stage of heavy ion collisions to hydrodynamics with QCD kinetic theory. Phys. Rev. Lett. 122(12), 122302 (2019). https://doi.org/10.1103/PhysRevLett.122.122302
A. Kurkela, A. Mazeliauskas, J.F. Paquet et al., Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions. Phys. Rev. C 99(3), 034910 (2019). https://doi.org/10.1103/PhysRevC.99.034910
C. Lourenco, H.K. Wohri, Heavy flavour hadro-production from fixed-target to collider energies. Phys. Rept. 433, 127–180 (2006). https://doi.org/10.1016/j.physrep.2006.05.005
A. Adare et al. [PHENIX], Heavy quark production in $$p+p$$ and energy loss and flow of heavy quarks in Au+Au collisions at $$\sqrt{s_{NN}}=200$$ GeV. Phys. Rev. C 84, 044905 (2011). https://doi.org/10.1103/PhysRevC.84.044905
L. Adamczyk et al. [STAR], Measurements of $$D^{0}$$ and $$D^{*}$$ production in $$p+p$$ collisions at $$\sqrt{s} = 200$$ GeV. Phys. Rev. D 86, 072013 (2012). https://doi.org/10.1103/PhysRevD.86.072013
R. Aaij et al. [LHCb], Prompt charm production in pp collisions at sqrt(s)=7 TeV. Nucl. Phys. B 871, 1–20 (2013). https://doi.org/10.1016/j.nuclphysb.2013.02.010
G. Aad et al. [ATLAS], Measurement of $$D^{*\pm }$$, $$D^\pm $$ and $$D_s^\pm $$ meson production cross sections in $$pp$$ collisions at $$\sqrt{s}=7$$ TeV with the ATLAS detector. Nucl. Phys. B 907, 717–763 (2016). https://doi.org/10.1016/j.nuclphysb.2016.04.032
B. Abelev et al. [ALICE], Measurement of charm production at central rapidity in proton-proton collisions at $$\sqrt{s}=2.76$$ TeV. JHEP 07, 191 (2012). https://doi.org/10.1007/JHEP07(2012)191
S. Acharya et al. [ALICE], Measurement of D-meson production at mid-rapidity in pp collisions at $${\sqrt{s}=7}$$ TeV. Eur. Phys. J. C 77(8), 550 (2017). https://doi.org/10.1140/epjc/s10052-017-5090-4
J. Adam et al. [STAR], Centrality and transverse momentum dependence of $$D^0$$-meson production at mid-rapidity in Au+Au collisions at $${\sqrt{s_{\text{ NN }}} = 200\,\text{ GeV }}$$. Phys. Rev. C 99(3), 034908 (2019). https://doi.org/10.1103/PhysRevC.99.034908
G. Xie [STAR], Measurements of open charm hadron production in Au+Au Collisions at $$\sqrt{s_{NN}}$$ = 200 GeV at STAR. PoS HardProbes2018 142 (2018). https://doi.org/10.22323/1.345.0142
M. He, R. Rapp, Charm-baryon production in proton-proton collisions. Phys. Lett. B 795, 117–121 (2019). https://doi.org/10.1016/j.physletb.2019.06.004
J. Adam et al. [STAR], First measurement of $$\Lambda _c$$ baryon production in Au+Au collisions at $$\sqrt{s_{\text{ NN }}}$$ = 200 GeV. Phys. Rev. Lett. 124(17), 172301 (2020). https://doi.org/10.1103/PhysRevLett.124.172301
Z.W. Lin, C.M. Ko, A Model for J/psi absorption in hadronic matter. Phys. Rev. C 62, 034903 (2000). https://doi.org/10.1103/PhysRevC.62.034903
Z.W. Lin, C.M. Ko, B. Zhang, Hadronic scattering of charm mesons. Phys. Rev. C 61, 024904 (2000). https://doi.org/10.1103/PhysRevC.61.024904
Z.W. Lin, T.G. Di, C.M. Ko, Charm meson scattering cross-sections by pion and rho meson. Nucl. Phys. A 689, 965–979 (2001). https://doi.org/10.1016/S0375-9474(00)00611-4
A. Sibirtsev, K. Tsushima, A.W. Thomas, Charmonium absorption by nucleons. Phys. Rev. C 63, 044906 (2001). https://doi.org/10.1103/PhysRevC.63.044906
C. Bierlich, T. Sjöstrand, M. Utheim, Hadronic rescattering in pA and AA collisions. Eur. Phys. J. A 57(7), 227 (2021). https://doi.org/10.1140/epja/s10050-021-00543-3
B. Andersson, P.A. Henning, On the dynamics of a color rope: The Fragmentation of interacting strings and the longitudinal distributions. Nucl. Phys. B 355, 82–105 (1991). https://doi.org/10.1016/0550-3213(91)90303-F
C. Bierlich, J.R. Christiansen, Effects of color reconnection on hadron flavor observables. Phys. Rev. D 92(9), 094010 (2015). https://doi.org/10.1103/PhysRevD.92.094010
C. Bierlich, G. Gustafson, L. Lönnblad et al., Effects of overlapping strings in pp collisions. JHEP 03, 148 (2015). https://doi.org/10.1007/JHEP03(2015)148
N. Fischer, T. Sjöstrand, Thermodynamical string fragmentation. JHEP 01, 140 (2017). https://doi.org/10.1007/JHEP01(2017)140
C. Bierlich, Rope hadronization and strange particle production. EPJ Web Conf. 171, 14003 (2018). https://doi.org/10.1051/epjconf/201817114003
T.S. Biro, H.B. Nielsen, J. Knoll, Color rope model for extreme relativistic heavy ion collisions. Nucl. Phys. B 245, 449–468 (1984). https://doi.org/10.1016/0550-3213(84)90441-3
A. Tai, B.H. Sa, Increase of effective string tension and production of strange particles. Phys. Lett. B 409, 393 (1997). https://doi.org/10.1016/S0370-2693(97)00793-4
J.S. Moreland, J.E. Bernhard, S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions. Phys. Rev. C 92(1), 011901 (2015). https://doi.org/10.1103/PhysRevC.92.011901
J.E. Bernhard, J.S. Moreland, S.A. Bass et al., Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium. Phys. Rev. C 94(2), 024907 (2016). https://doi.org/10.1103/PhysRevC.94.024907
L. Adamczyk et al. [STAR], Bulk properties of the medium produced in relativistic heavy-ion collisions from the Beam Energy Scan program. Phys. Rev. C 96(4), 044904 (2017). https://doi.org/10.1103/PhysRevC.96.044904
B.B. Back et al. [PHOBOS], Centrality dependence of charged hadron transverse momentum spectra in Au + Au collisions from s(NN)**(1/2) = 62.4-GeV to 200-GeV. Phys. Rev. Lett. 94, 082304 (2005). https://doi.org/10.1103/PhysRevLett.94.082304
J. Adams et al. [STAR], Transverse momentum and collision energy dependence of high p(T) hadron suppression in Au+Au collisions at ultrarelativistic energies. Phys. Rev. Lett. 91, 172302 (2003). https://doi.org/10.1103/PhysRevLett.91.172302
B. Abelev et al. [ALICE], Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at $$\sqrt{s_{{\text{ NN }}}} = 2.76$$ TeV. Phys. Lett. B 720, 52-62 (2013). https://doi.org/10.1016/j.physletb.2013.01.051
S. Acharya et al. [ALICE], Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC. JHEP 11, 013 (2018). https://doi.org/10.1007/JHEP11(2018)013
A. Adare et al. [PHENIX], Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $$\sqrt{s_{NN}}=7.7$$ to 200 GeV. Phys. Rev. C 93(2), 024901 (2016). https://doi.org/10.1103/PhysRevC.93.024901
J. Adam et al. [ALICE], Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $$\sqrt{s_{\text{ NN }}}=5.02$$ TeV. Phys. Lett. B 772, 567-577 (2017). https://doi.org/10.1016/j.physletb.2017.07.017
S. Acharya et al. [ALICE], Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at $$\sqrt{s_{\text{ NN }}}$$ = 5.44 TeV. Phys. Lett. B 788, 166-179 (2019). https://doi.org/10.1016/j.physletb.2018.10.052
S. Acharya et al. [ALICE], Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at $$\sqrt{s_{\text{ NN }}}$$ =5.44TeV. Phys. Lett. B 790, 35-48 (2019). https://doi.org/10.1016/j.physletb.2018.12.048
B. Alver et al. [PHOBOS], System size and centrality dependence of charged hadron transverse momentum spectra in Au + Au and Cu + Cu collisions at s(NN)**(1/2) = 62.4-GeV and 200-GeV. Phys. Rev. Lett. 96, 212301 (2006). https://doi.org/10.1103/PhysRevLett.96.212301
J. Adam et al. [ALICE], Centrality dependence of particle production in p-Pb collisions at $$\sqrt{s_{\text{ NN }} }$$= 5.02 TeV. Phys. Rev. C 91(6), 064905 (2015). https://doi.org/10.1103/PhysRevC.91.064905
P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012). Atom. Data Nucl. Data Tabl. 109–110, 1–204 (2016). https://doi.org/10.1016/j.adt.2015.10.002
T. Sjöstrand, S. Ask, J.R. Christiansen et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024
C. Bierlich, G. Gustafson, L. Lönnblad et al., The Angantyr model for heavy-ion collisions in PYTHIA8. JHEP 10, 134 (2018). https://doi.org/10.1007/JHEP10(2018)134
Y. Kanakubo, Y. Tachibana, T. Hirano, Unified description of hadron yield ratios from dynamical core-corona initialization. Phys. Rev. C 101(2), 024912 (2020). https://doi.org/10.1103/PhysRevC.101.024912
G. Papp, G. Gábor Barnaföldi, G. Bíró et al., First results with HIJING++ on high-energy heavy ion collisions. arXiv:1805.02635 [hep-ph]
J.H. Putschke, K. Kauder, E. Khalaj et al., The JETSCAPE framework. arXiv:1903.07706 [nucl-th]
L. Zheng, G.H. Zhang, Y.F. Liu et al., Investigating high energy proton proton collisions with a multi-phase transport model approach based on PYTHIA8 initial conditions. Eur. Phys. J. C 81, 755 (2021). https://doi.org/10.1140/epjc/s10052-021-09527-5
B. Schenke, R. Venugopalan, Eccentric protons? Sensitivity of flow to system size and shape in p+p, p+Pb and Pb+Pb collisions. Phys. Rev. Lett. 113, 102301 (2014). https://doi.org/10.1103/PhysRevLett.113.102301
H. Mäntysaari, B. Schenke, Evidence of strong proton shape fluctuations from incoherent diffraction. Phys. Rev. Lett. 117(5), 052301 (2016). https://doi.org/10.1103/PhysRevLett.117.052301
K. Welsh, J. Singer, U.W. Heinz, Initial state fluctuations in collisions between light and heavy ions. Phys. Rev. C 94(2), 024919 (2016). https://doi.org/10.1103/PhysRevC.94.024919
H. Mäntysaari, B. Schenke, C. Shen et al., Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC. Phys. Lett. B 772, 681–686 (2017). https://doi.org/10.1016/j.physletb.2017.07.038
D. d‘Enterria, G.K. Eyyubova, V.L. Korotkikh et al., Estimates of hadron azimuthal anisotropy from multiparton interactions in proton-proton collisions at $$\sqrt{s}=14$$ TeV. Eur. Phys. J. C 66, 173–185 (2010). https://doi.org/10.1140/epjc/s10052-009-1232-7
S. Eremin, S. Voloshin, Nucleon participants or quark participants? Phys. Rev. C 67, 064905 (2003). https://doi.org/10.1103/PhysRevC.67.064905
L. Zheng, Z. Yin, A systematic study of the initial state in heavy ion collisions based on the quark participant assumption. Eur. Phys. J. A 52, 45 (2016). https://doi.org/10.1140/epja/i2016-16045-x
C. Loizides, Glauber modeling of high-energy nuclear collisions at the subnucleon level. Phys. Rev. C 94(2), 024914 (2016). https://doi.org/10.1103/PhysRevC.94.024914
P. Bożek, W. Broniowski, M. Rybczyński, Wounded quarks in A+A, p+A, and p+p collisions. Phys. Rev. C 94(1), 014902 (2016). https://doi.org/10.1103/PhysRevC.94.014902
P. Bożek, W. Broniowski, M. Rybczynski et al., GLISSANDO 3: GLauber initial-state simulation and mOre, ver. 3. Comput. Phys. Commun. 245, 106850 (2019). https://doi.org/10.1016/j.cpc.2019.07.014
D. d’Enterria, C. Loizides, Progress in the Glauber model at collider energies. Ann. Rev. Nucl. Part. Sci. 71, 315–344 (2021). https://doi.org/10.1146/annurev-nucl-102419-060007
S. Acharya et al. [ALICE], Multiplicity dependence of $$\pi $$, K, and p production in pp collisions at $$\sqrt{s} = 13$$ TeV. Eur. Phys. J. C 80(8), 693 (2020). https://doi.org/10.1140/epjc/s10052-020-8125-1
J.L. Nagle, R. Belmont, K. Hill et al., Minimal conditions for collectivity in $$e^+e^-$$ and $$p+p$$ collisions. Phys. Rev. C 97(2), 024909 (2018). https://doi.org/10.1103/PhysRevC.97.024909
V. Khachatryan et al. [CMS], Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 765, 193–220 (2017). https://doi.org/10.1016/j.physletb.2016.12.009
T. Sjöstrand, M. Utheim, A framework for hadronic rescattering in pp collisions. Eur. Phys. J. C 80(10), 907 (2020). https://doi.org/10.1140/epjc/s10052-020-8399-3
S. Ferreres-Solé, T. Sjöstrand, The space-time structure of hadronization in the Lund model. Eur. Phys. J. C 78(11), 983 (2018). https://doi.org/10.1140/epjc/s10052-018-6459-8
A.V. da Silva, W.M. Serenone, D. Dobrigkeit Chinellato et al., Studies of heavy-ion collisions using PYTHIA Angantyr and UrQMD. arXiv:2002.10236 [hep-ph]
T. Kodama, S.B. Duarte, K.C. Chung et al., Causality and relativistic effects in intranuclear cascade calculations. Phys. Rev. C 29, 2146–2152 (1984). https://doi.org/10.1103/PhysRevC.29.2146
G. Kortemeyer, W. Bauer, K. Haglin et al., Causality violations in cascade models of nuclear collisions. Phys. Rev. C 52, 2714–2724 (1995). https://doi.org/10.1103/PhysRevC.52.2714
B. Zhang, Y. Pang, Frame dependence of parton cascade results. Phys. Rev. C 56, 2185–2190 (1997). https://doi.org/10.1103/PhysRevC.56.2185
B. Zhang, M. Gyulassy, Y. Pang, Equation of state and collision rate tests of parton cascade models. Phys. Rev. C 58, 1175–1182 (1998). https://doi.org/10.1103/PhysRevC.58.1175
S. Cheng, S. Pratt, P. Csizmadia et al., The Effect of finite range interactions in classical transport theory. Phys. Rev. C 65, 024901 (2002). https://doi.org/10.1103/PhysRevC.65.024901
C.Y. Wong, Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation from a classical point of view. Phys. Rev. C 25, 1460–1475 (1982). https://doi.org/10.1103/PhysRevC.25.1460
G. Welke, R. Malfliet, C. Gregoire et al., Collisional relaxation in simulations of heavy-ion collisions using Boltzmann-type equations. Phys. Rev. C 40, 2611–2620 (1989). https://doi.org/10.1103/PhysRevC.40.2611
Y. Pang, https://karman.physics.purdue.edu/OSCAR-old/rhic/gcp/proc.html; General Cascade Program, in Proceedings of RHIC’96, CU-TP-815 (1997)
D. Molnar, M. Gyulassy, New solutions to covariant nonequilibrium dynamics. Phys. Rev. C 62, 054907 (2000). https://doi.org/10.1103/PhysRevC.62.054907
D. Molnar, P. Huovinen, Dissipation and elliptic flow at RHIC. Phys. Rev. Lett. 94, 012302 (2005). https://doi.org/10.1103/PhysRevLett.94.012302
X.L. Zhao, G.L. Ma, Y.G. Ma et al., Validation and improvement of the ZPC parton cascade inside a box. Phys. Rev. C 102(2), 024904 (2020). https://doi.org/10.1103/PhysRevC.102.024904
T. Schäfer, D. Teaney, Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas. Rept. Prog. Phys. 72, 126001 (2009). https://doi.org/10.1088/0034-4885/72/12/126001
M.S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398 (1954). https://doi.org/10.1063/1.1740082
R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957). https://doi.org/10.1143/JPSJ.12.570
A. Muronga, Shear viscosity coefficient from microscopic models. Phys. Rev. C 69, 044901 (2004). https://doi.org/10.1103/PhysRevC.69.044901
N. Demir, S.A. Bass, Shear-viscosity to entropy-density ratio of a relativistic hadron gas. Phys. Rev. Lett. 102, 172302 (2009). https://doi.org/10.1103/PhysRevLett.102.172302
J. Fuini III., N.S. Demir, D.K. Srivastava et al., Shear viscosity in a perturbative quark-gluon-plasma. J. Phys. G 38, 015004 (2011). https://doi.org/10.1088/0954-3899/38/1/015004
C. Wesp, A. El, F. Reining et al., Calculation of shear viscosity using Green-Kubo relations within a parton cascade. Phys. Rev. C 84, 054911 (2011). https://doi.org/10.1103/PhysRevC.84.054911
S.X. Li, D.Q. Fang, Y.G. Ma et al., Shear viscosity to entropy density ratio in the Boltzmann-Uehling-Uhlenbeck model. Phys. Rev. C 84, 024607 (2011). https://doi.org/10.1103/PhysRevC.84.024607
M.R. Haque, Z.W. Lin, B. Mohanty, Multiplicity, average transverse momentum and azimuthal anisotropy in U+U collisions at $$\sqrt{s_{NN}}$$ = 200 GeV using AMPT model. Phys. Rev. C 85, 034905 (2012). https://doi.org/10.1103/PhysRevC.85.034905
H.J. Xu, X. Wang, H. Li et al., Importance of isobar density distributions on the chiral magnetic effect search. Phys. Rev. Lett. 121(2), 022301 (2018). https://doi.org/10.1103/PhysRevLett.121.022301
H.J. Xu, J. Zhao, X. Wang et al., Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision. Chin. Phys. C 42(8), 084103 (2018). https://doi.org/10.1088/1674-1137/42/8/084103
H. Li, H.J. Xu, J. Zhao et al., Multiphase transport model predictions of isobaric collisions with nuclear structure from density functional theory. Phys. Rev. C 98(5), 054907 (2018). https://doi.org/10.1103/PhysRevC.98.054907
J. Xu, L.W. Chen, C.M. Ko et al., Effects of hadronic potentials on elliptic flows in relativistic heavy ion collisions. Phys. Rev. C 85, 041901 (2012). https://doi.org/10.1103/PhysRevC.85.041901
J. Xu, T. Song, C.M. Ko et al., Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential. Phys. Rev. Lett. 112, 012301 (2014). https://doi.org/10.1103/PhysRevLett.112.012301
Z.W. Lin, Recent developments of a multi-phase transport model. Acta Phys. Polon. Supp. 7(1), 191–197 (2014). https://doi.org/10.5506/APhysPolBSupp.7.191
Z.W. Lin, G.L. Ma, unpublished
A.H. Tang, Probe chiral magnetic effect with signed balance function. Chin. Phys. C 44(5), 054101 (2020). https://doi.org/10.1088/1674-1137/44/5/054101
S. Choudhury, G. Wang, W. He et al., Background evaluations for the chiral magnetic effect with normalized correlators using a multiphase transport model. Eur. Phys. J. C 80(5), 383 (2020). https://doi.org/10.1140/epjc/s10052-020-7928-4