Further Results on the Observability of Quantum Systems Under General Measurement

Quantum Information Processing - Tập 5 - Trang 139-160 - 2006
Domenico D’Alessandro1, Raffaele Romano1
1Department of Mathematics, Iowa State University, Ames, USA

Tóm tắt

In this paper, we present a collection of results on the observability of quantum mechanical systems, in the case the output is the result of a discrete nonselective measurement. By defining an effective observable, we extend previous results, on the Lie algebraic characterization of observable systems, to general measurements. Further results include the characterization of a ‘best probe’ (i.e. a minimally disturbing probe) in indirect measurement and a study of the relation between disturbance and observability in this case. We also discuss how the observability properties of a quantum system relate to the problem of state reconstruction. Extensions of the formalism to the case of selective measurements are also given.

Tài liệu tham khảo

F. Albertini and D. D’Alessandro, Observability, measurement and parameter identification of quantum mechanical systems; applications to spin networks, in Proceedings of the 42-nd Conference on Decision and Control, Vol. 1, Maui, Hawaii, 2003, pp. 439–444 (2003). Albertini F., and D’Alessandro D. (2003). IEEE Trans Automatic Control 48(8):1399–1403 Albertini F., and D. D’Alessandro, Input–Output equivalence of spin networks under multiple measurements, to appear in Mathematics of Control Signals and Systems. Amiet J-P and Weigert S. (1999). J. Phys. A: Math. Gen. 32:2777–2784 Belavkin V.P. (1992). J. Anal. 42:171–201 Breuer H-P. and Petruccione F. (2002). The Theory of Open Quantum Systems. Oxford University Press, New York D’Alessandro D. (2003). J. Phys. A: Math Gen 36:9721–9735 Doherty A.C., Habib S., Jacobs K., Mabuchi H., and Tan S.M. (2000). Phys. Rev. A 62:012105 Hahn W. (1967). Stability of Motion. Springer Verlag, Berlin-Heidelberg Healy D.M. Jr. and Schroeck F.E. Jr (1995). J. Math. Phys. 36:453–507 Huang G.M., Tarn T.J., and Clark J.W. (1983). J. Math. Phys. 24:2608–2618 Ikeda M., Maeda H., and Kodama S. (1975). SIAM J. Control 13(2):304–326 Jurdjević V. and Sussmann H.J. (1972). J. Diff. Eqns. 12:313–329 Kailath T. (1980). Linear Systems. Englewood Cliffs, NJ Kraus K. (1983). States, Effects, and Operations, vol. 190 of Lecture Notes in Physics. Springer-Verlag, Berlin Pauli W. (1958). Encyclopedia of Physics, vol. 5. Springer, Berlin Ramakrishna V., Salapaka M.V., Dahleh M., Rabitz H., and Peirce A. (1995). Phys Rev A 51:960–966 Ruskov R., and Korotkov A.N. (2002). Phys. Rev. B 66 041401(R):1–4 Sakurai J.J. (1994). Modern Quantum Mechanics. Addison-Wesley, Reading MA Sontag E. (1990). Mathematical Control Theory; Deterministic Finite Dimensional Systems. Springer, New York Wang J., and Wiseman H.M. (2001). Phys. Rev. A 64:063810 Wiseman H.M., and Milburn G.J. (1993). Phys. Rev. Lett 70(5):548–551