Fungicidal effect of isoquercitrin via inducing membrane disturbance
Tài liệu tham khảo
Dorman, 2000, Antimicrobial agents from plants: antibacterial activity of plant volatile oils, J. Appl. Microbiol., 88, 308, 10.1046/j.1365-2672.2000.00969.x
Verpoorte, 2000, Engineering the plant cell factory for secondary metabolite production, Transgenic Res., 9, 323, 10.1023/A:1008966404981
Jayaraman, 2010, Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro, Int. J. Biol. Sci., 6, 556, 10.7150/ijbs.6.556
Morrissey, 1999, Fungal resistance to plant antibiotics as a mechanism of pathogenesis, Microbiol. Mol. Biol. Rev., 63, 708, 10.1128/MMBR.63.3.708-724.1999
Goossens, 2003, A functional genomics approach toward the understanding of secondary metabolism in plant cells, Proc. Natl. Acad. Sci. U. S. A., 8, 8595, 10.1073/pnas.1032967100
Oskoueian, 2011, Bioactive compounds and biological activities of Jatropha curcas L. kernel meal extract, Int. J. Mol. Sci., 12, 5955, 10.3390/ijms12095955
Danelutte, 2003, Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth, Phytochemistry, 64, 555, 10.1016/S0031-9422(03)00299-1
Cowan, 1999, Plant products as antimicrobial agents, Clin. Microbiol. Rev., 564, 10.1128/CMR.12.4.564
Kim, 2014, Phenolic compounds with IL-6 inhibitory activity from Aster yomena, Arch. Pharm. Res., 37, 845, 10.1007/s12272-013-0236-x
Zhou, 2014, Isoquercitrin activates the AMP-activated protein kinase (AMPK) signal pathway in rat H4IIE cells, BMC Complement. Altern. Med., 14, 10.1186/1472-6882-14-42
Liu, 2014, Electrochemical sensor for ultrasensitive determination of isoquercitrin and baicalin based on DM-β-cyclodextrin functionalized graphene nanosheets, Biosens. Bioelectron., 58, 242, 10.1016/j.bios.2014.02.051
Rogerio, 2007, Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma, Inflamm. Res., 56, 402, 10.1007/s00011-007-7005-6
Gasparotto Junior, 2011, Diuretic and potassium-sparing effect of isoquercitrin-an active flavonoid of Tropaeolum majus L., J. Ethnopharmacol., 134, 210, 10.1016/j.jep.2010.12.009
Choudhary, 2008, Atta-Ur-Rahman, phenolic and other constituents of fresh water fern Salvinia molesta, Phytochemistry, 69, 1018, 10.1016/j.phytochem.2007.10.028
Duan, 2009, Phytochemical constituents from Metasequoia glyptostroboids leaves, Nat. Prod. Sci., 15, 12
Freimoser, 1999, The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities, Appl. Environ. Microbiol., 65, 3727, 10.1128/AEM.65.8.3727-3729.1999
Moodley, 2014, The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay is a rapid, cheap, screening test for the in vitro anti-tuberculous activity of chalcones, J. Microbiol. Methods, 104, 72, 10.1016/j.mimet.2014.06.014
Lee, 2003, Gram-positive bacteria specific properties of silybin derived from Silybum marianum, Arch. Pharm. Res., 26, 597, 10.1007/BF02976707
Choi, 2013, Antifungal effect and pore-forming action of lactoferricin B like peptide derived from centipede Scolopendra subspinipes mutilans, Biochim. Biophys. Acta, 1828, 2745, 10.1016/j.bbamem.2013.07.021
Orlov, 2002, Potassium release, a useful tool for studying antimicrobial peptides, J. Microbiol. Methods, 49, 325, 10.1016/S0167-7012(01)00383-9
Park, 2008, Amphipathic alpha-helical peptide, HP (2–20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions, Biochim. Biophys. Acta, 1778, 229, 10.1016/j.bbamem.2007.09.020
Park, 2011, A plausible mode of action of pseudin-2, an antimicrobial peptide from Pseudis paradoxa, Biochim. Biophys. Acta, 1808, 171, 10.1016/j.bbamem.2010.08.023
Lee, 2002, Design of novel peptide analogs with potent fungicidal activity, based on PMAP-23 antimicrobial peptide isolated from porcine myeloid, Biochem. Biophys. Res. Commun., 293, 231, 10.1016/S0006-291X(02)00222-X
Hugonin, 2006, Membrane leakage induced by dynorphins, FEBS Lett., 580, 3201, 10.1016/j.febslet.2006.04.078
Hristova, 1997, Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins, J. Biol. Chem., 272, 24224, 10.1074/jbc.272.39.24224
Baginski, 2005, Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic, Acta Biochim. Pol., 52, 655, 10.18388/abp.2005_3426
Cohen, 2010, Amphotericin B membrane action: role for two types of ion channels in eliciting cell survival and lethal effects, J. Membr. Biol., 238, 1, 10.1007/s00232-010-9313-y
Wink, 2003, Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective, Phytochemistry, 64, 3, 10.1016/S0031-9422(03)00300-5
Pina-Vaz, 2004, Antifungal activity of Thymus oils and their major compounds, J. Eur. Acad. Dermatol. Venereol., 18, 73, 10.1111/j.1468-3083.2004.00886.x
Pinto, 2006, Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species, J. Med. Microbiol., 55, 1367, 10.1099/jmm.0.46443-0
Yu, 2003, Regulation and critical role of potassium homeostasis in apoptosis, Prog. Neurobiol., 70, 363, 10.1016/S0301-0082(03)00090-X
Bredin, 2005, Propyl paraben induces potassium efflux in Escherichia coli, J. Antimicrob. Chemother., 55, 1013, 10.1093/jac/dki110
Cox, 1998, Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli, Lett. Appl. Microbiol., 26, 355, 10.1046/j.1472-765X.1998.00348.x
Bolintineanu, 2010, Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli, Peptides, 31, 1, 10.1016/j.peptides.2009.11.010
Chou, 1989, The membrane potential changes polarity during capacitation of murine epididymal sperm, Biochem. Biophys. Res. Commun., 165, 58, 10.1016/0006-291X(89)91033-4
Arnt, 2006, Membrane activity of biomimetic facially amphiphilic antibiotics, J. Phys. Chem. B, 110, 3527, 10.1021/jp054339p
Tamba, 2007, Single GUV method reveals interaction of tea catechin (−)-epigallocatechin gallate with lipid membranes, Biophys. J., 92, 3178, 10.1529/biophysj.106.097105
Trier, 2011, Membrane fusion of pH-sensitive liposomes — a quantitative study using giant unilamellar vesicles, Soft Matter, 7, 9027, 10.1039/c1sm05818e
Tamba, 2009, Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface, J. Phys. Chem. B, 113, 4846, 10.1021/jp8109622
Alibegović, 2012, The optimal combination of cartilage source and apparatus for long-term in vitro chondrocyte viability analysis, J. Forensic Sci., 57, 1601, 10.1111/j.1556-4029.2012.02175.x
Shimanouchi, 2009, Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization, Colloids Surf. B: Biointerfaces, 73, 156, 10.1016/j.colsurfb.2009.05.014
Ladokhin, 1997, Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin, Biophys. J., 72, 1762, 10.1016/S0006-3495(97)78822-2
Portet, 2009, Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation, Biophys. J., 96, 4109, 10.1016/j.bpj.2009.02.063
Magzoub, 2005, Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins, Biochim. Biophys. Acta, 1716, 126, 10.1016/j.bbamem.2005.09.009
Vincent, 2004, Cytoplasmic membrane polarization in Gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline, Biochim. Biophys. Acta, 1672, 131, 10.1016/j.bbagen.2004.03.005
Benyagoub, 1996, Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi, Lipids, 31, 1077, 10.1007/BF02522465
Conejo-Garcia, 2005, Vascular leukocytes contribute to tumor vascularization, Blood, 105, 679, 10.1182/blood-2004-05-1906
Andrieux, 2002, Characterization of fluorescein isothiocyanate–dextrans used in vesicle permeability studies, Anal. Chem., 74, 5217, 10.1021/ac020119l
Lee, 2009, Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide, BMB Rep., 30, 586, 10.5483/BMBRep.2009.42.9.586
Guillén, 2010, A membranotropic region in the C-terminal domain of hepatitis C virus protein NS4B interaction with membranes, Biochim. Biophys. Acta, 1798, 327, 10.1016/j.bbamem.2009.07.011
Tachi, 2002, Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide–lipid interactions and selective toxicity, Biochemistry, 41, 10723, 10.1021/bi0256983