Fungi from the black cutworm Agrotis ipsilon oral secretions mediate plant–insect interactions

Arthropod-Plant Interactions - Tập 14 Số 4 - Trang 423-432 - 2020
Xuewei Chen1, Michelle Peiffer2, Ching Wen Tan2, Gary W. Felton2
1Department of Entomology, China Agricultural University, Beijing, 100193, China
2Department of Entomology, The Pennsylvania State University, University Park, PA 16802 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acevedo FE, Rivera-Vega LJ, Chung SH et al (2015) Cues from chewing insects-the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr Opin Plant Biol 26:80–86. https://doi.org/10.1016/j.pbi.2015.05.029

Acevedo FE, Peiffer M, Tan CW et al (2017) Fall armyworm-associated gut bacteria modulate plant defense responses. Mol Plant–Microbe Interact 30:127–137. https://doi.org/10.1094/MPMI-11-16-0240-R

Acevedo FE, Smith P, Peiffer M et al (2019) Phytohormones in fall armyworm saliva modulate defense responses in plants. J Chem Ecol 45:598–609. https://doi.org/10.1007/s10886-019-01079-z

Alborn HT, Turlings TCJ, Jones TH et al (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949. https://doi.org/10.1126/science.276.5314.945

Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47. https://doi.org/10.1046/j.1462-2920.2003.00383.x

Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci 16:294–299. https://doi.org/10.1016/j.tplants.2011.01.006

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Brownlie JC, Cass BN, Riegler M et al (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368. https://doi.org/10.1371/journal.ppat.1000368

Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166. https://doi.org/10.1146/annurev-micro-092412-155715

Casteel CL, Hansen AK (2014) Evaluating insect-microbiomes at the plant-insect interface. J Chem Ecol 40:836–847. https://doi.org/10.1007/s10886-014-0475-4

Chaudhary R, Atamian HS, Shen Z et al (2014) GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc Natl Acad Sci 111:8919–8924. https://doi.org/10.1073/pnas.1407687111

Chen CY, Liu YQ, Song WM et al (2019) An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci 116:14331–14338. https://doi.org/10.1073/pnas.1905471116

Chippendale GM (1970) Metamorphic changes in fat body proteins of the southwestern corn borer, Diatraea grandiosella. J Insect Physiol 16:1057–1068. https://doi.org/10.1016/0022-1910(70)90198-8

Chung SH, Rosa C, Scully ED et al (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci 110:15728–15733. https://doi.org/10.1073/pnas.1308867110

Desjardins AE, Hohn TM (1997) Mycotoxins in plant pathogenesis. Mol Plant–Microbe Interact 10:147–152. https://doi.org/10.1094/MPMI.1997.10.2.147

Douglas AE (2016) How multi-partner endosymbioses function. Nat Rev Microbiol 14:731–743. https://doi.org/10.1038/nrmicro.2016.151

Gange AC, Eschen R, Wearn JA et al (2012) Differential effects of foliar endophytic fungi on insect herbivores attacking a herbaceous plant. Oecologia 168:1023–1031. https://doi.org/10.1007/s00442-011-2151-5

Garantonakis N, Pappas ML, Varikou K et al (2018) Tomato inoculation with the endophytic strain Fusarium solani k results in reduced feeding damage by the zoophytophagous predator Nesidiocoris tenuis. Front Ecol Evol 6:126. https://doi.org/10.3389/fevo.2018.00126

Hannula SE, Zhu F, Heinen R, Bezemer TM (2019) Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat Commun 10:1254. https://doi.org/10.1038/s41467-019-09284-w

Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496. https://doi.org/10.1111/mec.12421

Hong SB, Go SJ, Shin HD et al (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97:1316–1329. https://doi.org/10.1080/15572536.2006.11832738

Hosokawa T, Koga R, Kikuchi Y et al (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci 107:769–774. https://doi.org/10.1073/pnas.0911476107

Jiggins FM, Hurst GDD, Jiggins CD et al (2000) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 120:439–446. https://doi.org/10.1017/S0031182099005867

Lee SC, Billmyre RB, Li A et al (2014) Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt. MBio 5:e01390–e1414. https://doi.org/10.1128/mBio.01390-14

Leroy PD, Sabri A, Heuskin S et al (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348. https://doi.org/10.1038/ncomms1347

Leslie JF (1995) Gibberella fujikuroi: available populations and variable traits. Can J Bot 73:282–291. https://doi.org/10.1139/b95-258

Logrieco A, Moretti A, Fornelli F et al (1996) Fusaproliferin production by Fusarium subglutinans and its toxicity to Artemia salina, SF-9 insect cells, and IARC/LCL 171 human B lymphocytes. Appl Environ Microbiol 62:3378–3384

Machouart M, Larche J, Burton K et al (2006) Genetic identification of the main opportunistic mucorales by PCR-restriction fragment length polymorphism. J Clin Microbiol 44:805–810. https://doi.org/10.1128/JCM.44.3.805-810.2006

Maciá-Vicente JG, Jansson H-B, Abdullah SK et al (2008) Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol Ecol 64:90–105. https://doi.org/10.1111/j.1574-6941.2007.00443.x

Malook S, Qi J, Hettenhausen C et al (2019) The oriental armyworm (Mythimna separata) feeding induces systemic defence responses within and between maize leaves. Philos Trans R Soc B Biol Sci 374:20180307. https://doi.org/10.1098/rstb.2018.0307

Mason CJ, Jones AG, Felton GW (2019a) Co-option of microbial associates by insects and their impact on plant-folivore interactions. Plant Cell Environ 42:1078–1086. https://doi.org/10.1111/pce.13430

Mason CJ, Ray S, Shikano I et al (2019b) Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc Natl Acad Sci 116:15991–15996. https://doi.org/10.1073/pnas.1908748116

Moisan K, Cordovez V, van de Zande EM et al (2019) Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia 190:589–604. https://doi.org/10.1007/s00442-019-04433-w

Moriyama M, Nikoh N, Hosokawa T, Fukatsu T (2015) Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. MBio 6:1–8. https://doi.org/10.1128/mBio.01732-15

Musser RO, Cipollini DF, Hum-Musser SM et al (2005) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Physiol 58:128–137. https://doi.org/10.1002/arch.20039

O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E (2000) A Multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species. Mycoscience 41:61–78. https://doi.org/10.1007/BF02464387

Peiffer M, Felton GW (2014) Insights into the saliva of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae). PLoS ONE 9:e88483. https://doi.org/10.1371/journal.pone.0088483

Peiffer M, Felton GW (2009) Do caterpillars secrete “oral secretions”? J Chem Ecol 35:326–335. https://doi.org/10.1007/s10886-009-9604-x

Pinto CF, Torrico-Bazoberry D, Penna M et al (2019) Chemical responses of Nicotiana tabacum (Solanaceae) induced by vibrational signals of a generalist herbivore. J Chem Ecol 45:708–714. https://doi.org/10.1007/s10886-019-01089-x

Ray S, Basu S, Rivera-Vega LJ et al (2016) Lessons from the far end: caterpillar frass-induced defenses in maize, rice, cabbage, and tomato. J Chem Ecol 42:1130–1141. https://doi.org/10.1007/s10886-016-0776-x

Reymond P (2013) Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238:247–258. https://doi.org/10.1007/s00425-013-1908-y

Rings RW, Arnold FJ, Keaster AJ et al (1974) Worldwide annotated bibliography of the black cutworm Agrotis ipsilon, Hufnagel. Ohio Agric Res Dev Cent Res Circ 1:106

Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci 106:19521–19526. https://doi.org/10.1073/pnas.0907504106

Schuster E, Dunn-Coleman N, Frisvad J, Van Dijck P (2002) On the safety of Aspergillus niger-a review. Appl Microbiol Biotechnol 59:426–435. https://doi.org/10.1007/s00253-002-1032-6

Stahl E, Hilfiker O, Reymond P (2018) Plant–arthropod interactions: who is the winner? Plant J 93:703–728. https://doi.org/10.1111/tpj.13773

Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270. https://doi.org/10.1016/j.tplants.2012.02.010

Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:153–164. https://doi.org/10.1139/b95-258

Wang J, Chung SH, Peiffer M et al (2016) Herbivore oral secreted bacteria trigger distinct defense responses in preferred and non-preferred host plants. J Chem Ecol 42:463–474. https://doi.org/10.1007/s10886-016-0712-0

Wang J, Peiffer M, Hoover K et al (2017) Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). New Phytol 214:1294–1306. https://doi.org/10.1111/nph.14429

Wang J, Yang M, Song Y et al (2018) Gut-associated bacteria of Helicoverpa zea indirectly trigger plant defenses in maize. J Chem Ecol 44:690–699. https://doi.org/10.1007/s10886-018-0970-0

Xu HX, Qian LX, Wang XW et al (2019) A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc Natl Acad Sci 116:490–495. https://doi.org/10.1073/pnas.1714990116