Fungal effector proteins: past, present and future

Molecular Plant Pathology - Tập 10 Số 6 - Trang 735-747 - 2009
P.J.G.M. de Wit1,2, Rahim Mehrabi2, Harrold A. van den Burg1,2, Ioannis Stergiopoulos2
1Centre for Biosystems Genomics, CBSG2012, P.O. Box 98, 6700 AB Wageningen, the Netherlands
2Wageningen University and Research Centre, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands

Tóm tắt

SUMMARYThe pioneering research of Harold Flor on flax and the flax rust fungus culminated in his gene‐for‐gene hypothesis. It took nearly 50 years before the first fungal avirulence (Avr) gene in support of his hypothesis was cloned. Initially, fungal Avr genes were identified by reverse genetics and map‐based cloning from model organisms, but, currently, the availability of many sequenced fungal genomes allows their cloning from additional fungi by a combination of comparative and functional genomics. It is believed that most Avr genes encode effectors that facilitate virulence by suppressing pathogen‐associated molecular pattern‐triggered immunity and induce effector‐triggered immunity in plants containing cognate resistance proteins. In resistant plants, effectors are directly or indirectly recognized by cognate resistance proteins that reside either on the plasma membrane or inside the plant cell. Indirect recognition of an effector (also known as the guard model) implies that the virulence target of an effector in the host (the guardee) is guarded by the resistance protein (the guard) that senses manipulation of the guardee, leading to activation of effector‐triggered immunity. In this article, we review the literature on fungal effectors and some pathogen‐associated molecular patterns, including those of some fungi for which no gene‐for‐gene relationship has been established.

Từ khóa


Tài liệu tham khảo

10.1007/BF00301063

10.1094/MPMI-6-210

10.1105/tpc.9.4.641

10.1094/PHYTO.2002.92.10.1122

10.1094/PHYTO-95-1061

10.1007/s10658-005-2104-0

10.1146/annurev.phyto.45.062806.094427

10.1080/mmy.39.1.9.17

10.1105/tpc.104.026682

10.1105/tpc.104.022715

10.1016/j.pmpp.2008.07.001

10.1111/j.1365-2958.2008.06270.x

Bryan G.T., 2000, A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi‐ta, Plant Cell, 12, 2033

10.1094/MPMI-19-1420

10.1074/jbc.M312594200

10.1074/jbc.M212196200

10.1111/j.1574-6968.2007.00684.x

10.1111/j.1365-294X.2005.02638.x

Ciuffetti L.M., 1997, A single gene encodes a selective toxin causal to the development of tan spot of wheat, Plant Cell, 9, 135

10.1111/j.1469-8137.2008.02459.x

10.1080/mmy.39.1.75.86

10.1007/s11032-005-0386-8

10.1093/mp/ssn019

De Wit P.J.G., 2007, How plants recognize pathogens and defend themselves, Cell. Mol. Life Sci., 64, 2726, 10.1007/s00018-007-7284-7

10.1016/S0048-4059(81)80081-1

10.1023/A:1000102509556

10.1105/tpc.020040

10.1073/pnas.0602577103

10.1371/journal.ppat.1000290

10.1111/j.1462-2920.2007.01561.x

10.1146/annurev.phyto.35.1.271

10.1111/j.1364-3703.2006.00375.x

10.1080/mmy.39.1.67.74

10.1094/MPMI-20-9-1092

10.1105/tpc.108.059394

Farman M.L., 1998, Chromosome walking to the AVR1‐CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps, Genetics, 150, 1049, 10.1093/genetics/150.3.1049

Flor H.H., 1942, Inheritance of pathogenicity in Melampsora lini, Phytopathology, 32, 653

10.1111/j.1462-5822.2008.01153.x

10.1111/j.1365-313X.2007.03166.x

10.1038/ng1839

10.1104/pp.107.108761

10.1016/j.fgb.2005.05.001

10.1094/MPMI-20-4-0459

10.1146/annurev.phyto.46.081407.104740

10.1146/annurev.phyto.46.120407.110050

10.1111/j.1365-2958.2006.05076.x

10.1094/MPMI-6-745

10.1046/j.1365-313x.2001.00982.x

10.1111/j.1365-313X.2004.02032.x

10.1021/bi0023089

10.1371/journal.ppat.1000061

10.1111/j.1365-313X.2009.03838.x

10.1111/j.1364-3703.2007.00384.x

10.1023/A:1002943805229

10.1007/BF00264664

10.1094/PHYTO.2003.93.11.1452

10.1093/emboj/19.15.4004

10.1038/nature05286

10.1105/tpc.9.3.367

10.1146/annurev.phyto.37.1.335

10.1080/07352689409701910

10.1111/j.1462-5822.2009.01318.x

10.1111/j.1469-8137.2004.01156.x

10.1073/pnas.0508882103

10.1016/j.pbi.2007.04.017

10.1094/MPMI-4-052

10.1094/MPMI.2001.14.5.671

10.1094/MPMI-8-0939

10.1094/MPMI-18-1130

10.1094/MPMI-21-5-0658

10.1126/science.1069288

10.1046/j.1365-313x.2000.00843.x

10.1073/pnas.95.15.9014

10.1094/MPMI.1997.10.6.725

10.1105/tpc.7.8.1195

10.1139/g06-088

10.1046/j.1464-6722.2001.00095.x

10.1046/j.1365-2958.2002.03060.x

10.1094/MPMI-21-3-0315

10.1094/MPMI-20-2-0168

10.1094/MPMI-6-412

10.1111/j.1469-8137.2007.02058.x

10.1111/j.1469-8137.2008.02613.x

10.1038/ni0107-11

10.1016/j.tim.2006.09.003

10.1073/pnas.0705147104

10.1007/s00438-007-0291-4

10.1105/tpc.12.11.2019

10.1073/pnas.0902362106

10.1002/pro.5560031022

10.1111/j.1365-2958.2008.06547.x

10.1094/MPMI.2001.14.3.316

10.1111/j.1365-2958.2004.04177.x

10.1094/MPMI-18-0015

10.1105/tpc.106.043307

10.1002/j.1460-2075.1995.tb00090.x

10.1126/science.1111404

10.1023/A:1026189225466

10.1094/MPMI.2004.17.10.1114

10.1007/s00018-003-3394-z

10.1105/tpc.107.056325

10.1094/MPMI.2004.17.4.394

10.1126/science.1136372

10.1105/tpc.009258

10.1007/s00122-007-0638-6

10.1073/pnas.81.19.6024

10.1094/MPMI-20-10-1271

10.1146/annurev.phyto.112408.132637

10.1105/tpc.7.8.1221

10.1111/j.1364-3703.2006.00320.x

10.1111/j.1364-3703.2005.00292.x

10.1093/genetics/127.1.87

Valent B., 2009, The biotrophic interfacial complex and effector translocation during rice blast disease, Phytopathology, 99, S167

10.1074/jbc.M308304200

10.1104/pp.106.094912

10.1016/S0014-5793(97)00117-8

10.1371/journal.pone.0002875

10.1105/tpc.107.053611

10.1111/j.1365-2958.2004.04288.x

10.1105/tpc.109.066324

10.1111/j.1364-3703.2005.00303.x

10.1007/s11032-008-9211-5

10.1016/j.fgb.2007.02.003