Fungal Pretreatment of Corn Stover by Fomes sp. EUM1: Simultaneous Production of Readily Hydrolysable Biomass and Useful Biocatalysts

Waste and Biomass Valorization - Tập 10 - Trang 2637-2650 - 2018
Jazmín Edith Méndez-Hernández1, Octavio Loera2, Edna Madai Méndez-Hernández3, Esperanza Herrera4, Oscar Arce-Cervantes5, Nicolás Óscar Soto-Cruz1
1Department of Chemical and Biochemical Engineering, Instituto Tecnológico de Durango, Durango, Mexico
2Department of Biotechnology, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
3Institute of Scientific Research, Universidad Juárez del Estado de Durango, Durango, Mexico
4Faculty of Veterinary Medicine and Zootechny, Universidad Juárez del Estado de Durango, Durango, Mexico
5Institute of Agricultural Sciences, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico

Tóm tắt

In this work we studied two approaches for the revalorization of corn stover (CS): Feedstock for bioethanol generation and substrate for the production of biocatalysts. The practical application of two of these biocatalysts (laccases and cellulases) was also evaluated. The hydrolysis of CS was improved through a pretreatment with the thermotolerant fungus Fomes sp. EUM1; simultaneously, enzymatic extracts enriched with laccases or cellulases were obtained and applied for the pretreatment or hydrolysis of untreated CS. After 7 days, the fungal pretreatment promoted a significant increase in the release of reducing sugars (60%) and in the hydrolysis rate (50%). Lignin content decreased 61.2%, while holocellulose remained practically unchanged; a significant positive correlation (r = 0.948, p = 0.01) was found between laccase production and lignin degradation. Regarding biocatalysts application, the cellulases of Fomes sp. EUM1 showed catalytic properties similar to those of commercial enzymes; in addition, the pretreatment with laccases reduced 70% the processing-time (compared to the fungal treatment), and improved the release of reducing sugars and the hydrolysis rate by 26 and 29%, respectively. The pretreatment of CS with Fomes sp. EUM1 produces two valuable products: saccharificable biomass useful for bioethanol production and highly active enzymes applicable in bioconversion processes.

Tài liệu tham khảo

BP Statistical Review of World Energy June 2017. (2017) Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., Nelson, R.: Energy and environmental aspects of using corn stover for fuel ethanol. ‎J. Ind. Ecol. 7, 117–146 (2003) Renewable Fuel Association. Going Global: 2015 Ethanol Industry Outlook. Renewable Fuel Association, Washington, DC (2015) Wheals, A.E., Basso, L.C., Alves, D.M., Amorim, H.V.: Fuel ethanol after 25 years. Trends Biotechnol. 17, 482–487 (1999) Wan, C., Li, Y.: Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour. Technol. 101, 6398–6403 (2010) USDA-NASS.: Agricultural statistics data base. National statistics for corn, https://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS (2016). Accessed 29 Nov 2016 Instituto Nacional de Estadística y Geografía (INEGI): El sector alimentario en México 2014, Serie estadísticas sectoriales. Instituto Nacional de Estadística y Geografía (INEGI), México (2014) Sun, F.H., Li, J., Yuan, Y.X., Yan, Z.Y., Liu, X.F.: Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. Int. Biodeterior. Biodegradation 65, 931–938 (2011) Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C.: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Department of Energy/GO-102005-2135. U.S. (2005) Gao, Z., Mori, T., Kondo, R.: The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis. Biotechnol. Biofuels 5, 1–11 (2012) Öhgren, K., Bura, R., Saddler, J., Zacchi, G.: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98, 2503–2510 (2007) Torget, T., Walter, P., Himmel, M., Grohmann, K.: Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl. Biochem. Biotechnol. 28, 75–86 (1991) da Costa Sousa, L., Chundawat, S.P., Balan, V., Dale, B.E.: ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 20, 339–347 (2009) Wang, F.Q., Xie, H., Chen, W., Wang, E.T., Du, F.G., Song, A.D.: Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresour. Technol. 144, 572–578 (2013) Mohanram, S., Rajan, K., Carrier, D.J., Nain, L., Arora, A.: Insights into biological delignification of rice stuntreated by Trametes hirsuta and Myrothecium roridum and comparison of hydrolysis yields with dilute acid pretreatment. Biomass. Bioenergy. 76, 54–60 (2015) Van Soest, P.V., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991) Wolfenden, B.S., Willson, R.L.: Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate)., J. Chem. Soc. Perkin Trans. 2. 0, 805–812 (1982) Archibald, F.S.: A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol. 58, 3110–3116 (1992) Kuwahara, M., Glenn, J.K., Morgan, M.A., Gold, M.H.: Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169, 247–250 (1984) Shin, K., Oh, I., Kim, C.: Production and purification of Remazol Brilliant Blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl. Environ. Microbiol. 63, 1744–1748 (1997) Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987) Loera, O., Córdova, J.: Improvement of xylanase production by a parasexual cross between Aspergillus niger strains. Braz. Arch. Biol. Technol. 46, 177–181 (2003) Arce-Cervantes, O., Mendoza, G., Miranda, L., Meneses, M., Loera, O.: Efficiency of lignocellulolytic extracts from thermotolerant strain Fomes sp. EUM1: stability and digestibility of agricultural wastes. J. Agric. Sci. Technol. 15, 229–240 (2013) Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976) Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. ‎Anal. Chem. 31, 426–428 (1959) McMillan, J.D.: Pretreatment of lignocellulosic biomass. In: Himmel, M.E., Baker, J.O., Overend, R.P. (eds.) Enzymatic Conversion of Biomass for Fuels Production, pp. 292–324. American Chemical Society, Washington, DC (1994) Yu, H., Du, W., Zhang, J., Ma, F., Zhang, X., Zhong, W.: Fungal treatment of corn stover enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan. Bioresour. Technol. 101, 6728–6734 (2010) Zhao, L., Cao, G.L., Wang, A.J., Ren, H.Y., Dong, D., Liu, Z.N., Guan, X.Y., Xu, C.J., Ren, N.Q.: Fungal pretreatment of corn stover with Phanerochaete chrysosporium for enhancing enzymatic hydrolysis and hydrogen production. Bioresour. Technol. 114, 365–369 (2012) Saha, B.C., Qureshi, N., Kennedy, G.J., Cotta, M.A.: Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int. Biodeterior. Biodegradation 109, 29–35 (2016) Chen, F., Dixon, R.A.: Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25, 759–761 (2007) Müller, H.W., Trösch, W.: Screening of white-rot fungi for biological pretreatment of wheat stuntreated for biogas production. Appl. Microbiol. Biotechnol. 24, 180–185 (1986) Cianchetta, S., Di Maggio, B., Burzi, P.L., Galletti, S.: Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat stuntreated. Appl. Biochem. Biotechnol. 173, 609–623 (2014) Sánchez, C.: Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194 (2009) García-Torreiro, M., López-Abelairas, M., Lu-Chau, T.A., Lema, J.M.: Fungal pretreatment of agricultural residues for bioethanol production. Ind. Crops Prod. 89, 486–492 (2016) Ordaz-Hernández, A., Ortega-Sánchez, E., Montesinos-Matías, R., Hernández-Martínez, R., Torres-Martínez, D., Loera, O.: Morphological and enzymatic response of the thermotolerant fungus Fomes sp. EUM1 in solid state fermentation under thermal stress. FEMS Microbiol. Lett. 363, 1–6 (2016) Ordaz, A., Favela, E., Meneses, M., Mendoza, G., Loera, O.: Hyphal morphology modification in thermal adaptation by the white-rot fungus Fomes sp. EUM1. J. Basic Microbiol. 52, 167–174 (2012) Membrillo, I., Sánchez, C., Meneses, M., Favela, E., Loera, O.: Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotus ostreatus growing on sugar cane bagasse. Bioresour. Technol. 102, 1581–1586 (2011) Kadimaliev, D.A., Revin, V.V., Atykyan, N.A., Samuilov, V.D.: Effect of wood modification on lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinus. Appl. Biochem. Microbiol. 39, 488–492 (2003) Saqib, A.A.N., Whitney, P.J.: Role of fragmentation activity in cellulose hydrolysis. Int. Biodeterior. Biodegrad. 58, 180–185 (2006) Morgavi, D.P., Beauchemin, K.A., Nsereko, V.L., Rode, L.M., McAllister, T.A., Wang, Y.: Trichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrates but not pure cellulose. ‎J. Sci. Food Agric. 84, 1083–1090 (2004) Qiu, W., Chen, H.: Enhanced the enzymatic hydrolysis efficiency of wheat stuntreated after combined steam explosion and laccase pretreatment. Bioresour. Technol. 118, 8–12 (2012) Moreno, A.D., Ibarra, D., Fernández, J.L., Ballesteros, M.: Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour. Technol. 106, 101–109 (2012) Moilanen, U., Kellock, M., Galkin, S., Viikari, L.: The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microb. Technol. 49, 492–498 (2011) Palonen, H., Viikari, L.: Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. ‎Biotechnol. Bioeng. 86, 550–557 (2004) Gutiérrez, A., Rencoret, J., Cadena, E.M., Rico, A., Barth, D., José, C., Martínez, A.T.: Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour. Technol. 119, 114–122 (2012) Chen, Q., Marshall, M.N., Geib, S.M., Tien, M., Richard, T.L.: Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour. Technol. 117, 186–192 (2012) Chen, M., Zhao, J., Xia, L.: Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenergy. 33, 1381–1385 (2009) Wan, C., Li, Y.: Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb. Technol. 47, 31–36 (2010) Kim, S., Holtzapple, M.T.: Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 1994–2006 (2005) Torget, R., Walter, P., Himmel, M., Grohmann, K.: Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl. Biochem. Biotechnol. 28, 75–86 (1991) Shi, J., Sharma-Shivappa, R.R., Chinn, M., Howell, N.: Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy. 33, 88–96 (2009)