Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wang, 2008, Application of nanotechnology in cancer therapy and imaging, CA Cancer J. Clin., 58, 97, 10.3322/CA.2007.0003
Barreto, 2011, Nanomaterials: Applications in cancer imaging and therapy, Adv. Mater., 23, H18
Salunkhe, 2014, Magnetic hyperthermia with magnetic nanoparticles: A status review, Curr. Top. Med. Chem., 14, 572, 10.2174/1568026614666140118203550
Pinheiro, 2019, Liver cancer: A leading cause of cancer death in the United States and the role of the 1945–1965 birth cohort by ethnicity, J. JHEP Rep., 1, 162
Mornet, 2004, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 14, 2161, 10.1039/b402025a
Pantic, 2010, Magnetic nanoparticles in cancer diagnosis and treatment: Novel approaches, Rev. Adv. Mater. Sci., 26, 67
Roca, 2009, Progress in the preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D Appl. Phys., 42, 224002, 10.1088/0022-3727/42/22/224002
Giustini, 2010, Magnetic nanoparticle hyperthermia in cancer treatment, Nano Life, 1, 17, 10.1142/S1793984410000067
Yagawa, 2017, Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery, J. Cancer Metastasis Treat., 3, 218, 10.20517/2394-4722.2017.35
Kobayashi, 2011, Cancer hyperthermia using magnetic nanoparticles, Biotechnol. J., 6, 1342, 10.1002/biot.201100045
Skowronek, 2007, Hyperthermia–description of a method and a review of clinical applications, Rep. Pract. Oncol. Radiother., 12, 267, 10.1016/S1507-1367(10)60065-X
Hervault, 2014, Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer, Nanoscale, 6, 11553, 10.1039/C4NR03482A
Rivera-Chaverra, M.J., Restrepo-Parra, E., Acosta-Medina, C.D., Mello, A., and Ospina, R. (2020). Synthesis of oxide iron nanoparticles using laser ablation for possible hyperthermia applications. J. Nanomater., 10.
Riva, E.R., Sinibaldi, E., Grillone, A.F., del Turco, S., Mondini, A., Li, T., Takeoka, S., and Mattoli, V. (2020). Enhanced in vitro magnetic cell targeting of doxorubicin-loaded magnetic liposomes for localized cancer therapy. J. Nanomater., 10.
Islam, K., Haque, M., Kumar, A., Hoq, A., Hyder, F., and Hoque, S.M.J.N. (2020). Manganese ferrite nanoparticles (MnFe2O4): Size dependence for hyperthermia and negative/positive contrast enhancement in MRI. Nanomaterials, 10.
Wilhelm, 2016, Analysis of nanoparticle delivery to tumours, Nat. Rev. Mater., 1, 1, 10.1038/natrevmats.2016.14
Song, 1984, Effect of local hyperthermia on blood flow and microenvironment: A review, Cancer Res., 44, 4721s
Storm, 1979, Normal tissue and solid tumor effects of hyperthermia in animal models and clinical trials, Cancer Res., 39, 2245
Tamarov, 2014, Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy, Sci. Rep., 4, 7034, 10.1038/srep07034
Siemann, 2011, The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents, Cancer Treat. Rev., 37, 63, 10.1016/j.ctrv.2010.05.001
Vargas, 2015, Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications, Eur. J. Inorg. Chem., 2015, 4495, 10.1002/ejic.201500598
Song, 2001, Improvement of tumor oxygenation by mild hyperthermia, Radiat. Res., 155, 515, 10.1667/0033-7587(2001)155[0515:IOTOBM]2.0.CO;2
Kong, 2012, Magnetic targeting of nanoparticles across the intact blood–brain barrier, J. Control. Release, 164, 49, 10.1016/j.jconrel.2012.09.021
Pankhurst, 2003, Applications of magnetic nanoparticles in biomedicine, J. Phys. D Appl. Phys., 36, R167, 10.1088/0022-3727/36/13/201
Sapareto, 1984, Thermal dose determination in cancer therapy, Int. J. Radiat. Oncol. Biol. Phys., 10, 787, 10.1016/0360-3016(84)90379-1
Teran, 2012, Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions, Appl. Phys. Lett., 101, 062413, 10.1063/1.4742918
Kawai, 2005, Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats, Prostate, 64, 373, 10.1002/pros.20253
Ito, 2004, Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia, Cancer Lett., 212, 167, 10.1016/j.canlet.2004.03.038
Javier, 2008, Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging, Bioconjug. Chem., 19, 1309, 10.1021/bc8001248
Nair, 2010, Aptamer conjugated magnetic nanoparticles as nanosurgeons, Nanotechnology, 21, 455102, 10.1088/0957-4484/21/45/455102
Berry, 2008, Intracellular delivery of nanoparticles via the HIV-1 tat peptide, Nanomedicine, 3, 357, 10.2217/17435889.3.3.357
Taratula, 2013, Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells, Int. J. Pharm., 458, 169, 10.1016/j.ijpharm.2013.09.032
Ojeda, 2016, Chlorotoxin: Structure, activity, and potential uses in cancer therapy, Pept. Sci., 106, 25, 10.1002/bip.22748
Rubia-Rodríguez, I., Santana-Otero, A., Spassov, S., Tombácz, E., Johansson, C., de la Presa, P., Teran, F.J., Morales, M.d., Veintemillas-Verdaguer, S., and Thanh, N.T. (2021). Whither magnetic hyperthermia? A tentative roadmap. Materials, 14.
Dutz, 2014, Magnetic particle hyperthermia—A promising tumour therapy?, Nanotechnology, 25, 452001, 10.1088/0957-4484/25/45/452001
Habash, 2006, Thermal therapy, part 2: Hyperthermia techniques, Crit. Rev. Biomed. Eng., 34, 491, 10.1615/CritRevBiomedEng.v34.i6.30
Hergt, 2007, Magnetic particle hyperthermia—Biophysical limitations of a visionary tumour therapy, J. Magn. Magn. Mater., 311, 187, 10.1016/j.jmmm.2006.10.1156
Suriyanto, 2017, Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: A review, Biomed. Eng. Online, 16, 36, 10.1186/s12938-017-0327-x
Han, 2015, Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries, J. Power Sources, 277, 9, 10.1016/j.jpowsour.2014.11.150
Abenojar, 2016, Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles, Prog. Nat. Sci. Mater. Int., 26, 440, 10.1016/j.pnsc.2016.09.004
Kafrouni, 2016, Recent progress on magnetic nanoparticles for magnetic hyperthermia, Prog. Biomater., 5, 147, 10.1007/s40204-016-0054-6
Chang, 2018, Biologically targeted magnetic hyperthermia: Potential and limitations, Front. Pharmacol., 9, 831, 10.3389/fphar.2018.00831
Perigo, 2015, Fundamentals and advances in magnetic hyperthermia, Appl. Phys. Rev., 2, 041302, 10.1063/1.4935688
Huang, 2012, On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field, Meas. Sci. Technol., 23, 035701, 10.1088/0957-0233/23/3/035701
Wang, 2012, Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field, IEEE Trans. Magn., 49, 255, 10.1109/TMAG.2012.2224648
Natividad, 2012, New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia, Nanoscale, 4, 3954, 10.1039/c2nr30667k
Garaio, 2014, Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry), Nanotechnology, 26, 015704, 10.1088/0957-4484/26/1/015704
Hergt, 2004, Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia, J. Magn. Magn. Mater., 270, 345, 10.1016/j.jmmm.2003.09.001
Dutz, 2007, Hysteresis losses of magnetic nanoparticle powders in the single domain size range, J. Magn. Magn. Mater., 308, 305, 10.1016/j.jmmm.2006.06.005
Liu, 2014, Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents, J. Mater. Chem. B, 2, 120, 10.1039/C3TB21146K
Deatsch, 2014, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. Magn. Mater., 354, 163, 10.1016/j.jmmm.2013.11.006
Carrey, 2011, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, J. Appl. Phys., 109, 083921, 10.1063/1.3551582
Iacovita, C., Florea, A., Dudric, R., Pall, E., Moldovan, A.I., Tetean, R., Stiufiuc, R., and Lucaciu, C.M. (2016). Small versus large iron oxide magnetic nanoparticles: Hyperthermia and cell uptake properties. Molecules, 21.
Iacovita, C., Florea, A., Scorus, L., Pall, E., Dudric, R., Moldovan, A.I., Stiufiuc, R., Tetean, R., and Lucaciu, C.M. (2019). Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. Nanomaterials, 9.
Yallapu, 2015, Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles, Biomaterials, 46, 1, 10.1016/j.biomaterials.2014.12.045
Hajipour, 2014, Hyperthermia-induced protein corona improves the therapeutic effects of zinc ferrite spinel-graphene sheets against cancer, RSC Adv., 4, 62557, 10.1039/C4RA10862K
Martens, 2019, Maghemite nanoparticles stabilize the protein corona formed with transferrin presenting different iron-saturation levels, Nanoscale, 11, 16063, 10.1039/C9NR04967C
Liu, 2014, Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications, Curr. Opin. Chem. Eng., 4, 38, 10.1016/j.coche.2013.12.010
Kittel, 1946, Theory of the structure of ferromagnetic domains in films and small particles, Phys. Rev., 70, 965, 10.1103/PhysRev.70.965
Lu, 2007, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222, 10.1002/anie.200602866
Pradhan, 2007, Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application, J. Biomed. Mater. Res. Part B Appl. Biomater., 81, 12, 10.1002/jbm.b.30630
Rosensweig, 2002, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater., 252, 370, 10.1016/S0304-8853(02)00706-0
Lartigue, 2011, Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties, J. Am. Chem. Soc., 133, 10459, 10.1021/ja111448t
Jeun, 2012, Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine, Appl. Phys. Lett., 100, 092406, 10.1063/1.3689751
Fortin, 2007, Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc., 129, 2628, 10.1021/ja067457e
Song, 2012, Influence of morphology and surface exchange reaction on magnetic properties of monodisperse magnetite nanoparticles, Colloids Surf. A Physicochem. Eng. Asp., 408, 114, 10.1016/j.colsurfa.2012.05.039
Noh, 2012, Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis, Nano Lett., 12, 3716, 10.1021/nl301499u
Simeonidis, 2013, Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications, Sci. Rep., 3, 1
Serantes, 2014, Multiplying magnetic hyperthermia response by nanoparticle assembling, J. Phys. Chem. C., 118, 5927, 10.1021/jp410717m
Nemati, 2016, Enhanced magnetic hyperthermia in iron oxide nano-octopods: Size and anisotropy effects, J. Phys. Chem. C., 120, 8370, 10.1021/acs.jpcc.6b01426
Chen, 2013, Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization, ACS Nano, 7, 8990, 10.1021/nn4035266
Dutz, 2013, Magnetic heating effect of nanoparticles with different sizes and size distributions, J. Magn. Magn. Mater., 328, 80, 10.1016/j.jmmm.2012.09.064
Yang, 2018, Magnetic interaction of multifunctional core–shell nanoparticles for highly effective theranostics, Adv. Mater., 30, 1802444, 10.1002/adma.201802444
Liu, 2016, Synthesis of ferromagnetic Fe0.6Mn0.4O nanoflowers as a new class of magnetic theranostic platform for in vivo T1-T2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy, Adv. Healthc. Mater., 5, 2092, 10.1002/adhm.201600357
Jang, 2009, Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles, Angew. Chem. Int. Ed., 48, 1234, 10.1002/anie.200805149
Hergt, 2005, Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools, J. Magn. Magn. Mater., 293, 80, 10.1016/j.jmmm.2005.01.047
Jordan, 2003, Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids, J. Nanoparticle Res., 5, 597, 10.1023/B:NANO.0000006155.67098.44
Lv, 2015, Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles, RSC Adv., 5, 76764, 10.1039/C5RA12558H
Yang, 2015, Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc, Adv. Funct. Mater., 25, 812, 10.1002/adfm.201402764
Guardia, 2012, Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment, ACS Nano, 6, 3080, 10.1021/nn2048137
Nayek, C., Manna, K., Bhattacharjee, G., Murugavel, P., and Obaidat, I. (2017). Investigating size-and temperature-dependent coercivity and saturation magnetization in PEG coated Fe3O4 nanoparticles. Magnetochemistry, 3.
Sugumaran, 2019, GO-functionalized large magnetic iron oxide nanoparticles with enhanced colloidal stability and hyperthermia performance, ACS Appl. Mater. Interfaces, 11, 22703, 10.1021/acsami.9b04261
Liu, 2015, Magnetic vortex nanorings: A new class of hyperthermia agent for highly efficient in vivo regression of tumors, Adv. Mater., 27, 1939, 10.1002/adma.201405036
Sathya, 2016, CoxFe3–xO4 nanocubes for theranostic applications: Effect of cobalt content and particle size, Chem. Mater., 28, 1769, 10.1021/acs.chemmater.5b04780
Lee, 2011, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol., 6, 418, 10.1038/nnano.2011.95
Peng, 2012, Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications, Small, 8, 3620, 10.1002/smll.201201427
Liu, 2012, Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents, J. Mater. Chem., 22, 8235, 10.1039/c2jm30472d
Nguyen, 2014, Functionalization of magnetic nanoparticles for biomedical applications, Korean J. Chem. Eng., 31, 1289, 10.1007/s11814-014-0156-6
Naseer, 2014, responsive hybrid polymer colloids for ultrasensitive molecular imaging, J. Colloid Sci. Biotechnol., 3, 19, 10.1166/jcsb.2014.1073
Fatima, 2015, Magnetic nanoparticles for bioseparation, Korean J. Chem. Eng., 34, 589, 10.1007/s11814-016-0349-2
Sahoo, 2001, phosphonate/phosphate coating on magnetite nanoparticles: A comparison with fatty acids, Langmuir, 17, 7907, 10.1021/la010703+
Lin, 2001, Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly, J. Solid State Chem., 159, 26, 10.1006/jssc.2001.9117
Gupta, 2004, Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture, J. Mater. Sci. Mater. Med., 15, 493, 10.1023/B:JMSM.0000021126.32934.20
Shan, 2003, Immobilization of pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization, Biotechnol. Lett., 25, 1977, 10.1023/B:BILE.0000004388.15751.8c
Berry, 2003, Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro, Biomaterials, 24, 4551, 10.1016/S0142-9612(03)00237-0
Khor, 2003, Implantable applications of chitin and chitosan, Biomaterials, 24, 2339, 10.1016/S0142-9612(03)00026-7
Burugapalli, 2004, Effect of composition of interpenetrating polymer network hydrogels based on poly (acrylic acid) and gelatin on tissue response: A quantitative in vivo study, J. Biomed. Mater. Res. Part A, 68, 210, 10.1002/jbm.a.10117
Schowen, 2004, Polyvinylpyrrolidone–drug conjugate: Synthesis and release mechanism, J. Control. Release, 94, 91, 10.1016/j.jconrel.2003.09.014
Ruiz, 1991, In vivo peptide release from poly (DL-lactic acid-co-glycolic acid) copolymer 5050 microspheres, J. Control. Release, 16, 177, 10.1016/0168-3659(91)90041-B
Olsen, 2003, Recombinant collagen and gelatin for drug delivery, Adv. Drug Deliv. Rev., 55, 1547, 10.1016/j.addr.2003.08.008
Clark, 2016, CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing, Proc. Natl. Acad. Sci. USA, 113, 3850, 10.1073/pnas.1603018113
Slamon, 1990, Studies of the HER-2/neu proto-oncogene in human breast cancer, Cancer Investig., 8, 253, 10.3109/07357909009017573
Tse, 2015, PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer, Nanomedicine, 10, 375, 10.2217/nnm.14.122
Zhang, 2011, Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia, Int. J. Hyperth., 27, 682, 10.3109/02656736.2011.609863
DeNardo, 2007, Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF–induced thermoablative therapy for human breast cancer in mice, J. Nucl. Med., 48, 437
Milowsky, 2016, Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer, Urol. Oncol., 34, e15, 10.1016/j.urolonc.2016.07.005
Masuko, 1997, Antitumor activity of selective hyperthermia in tumor-bearing rats using thermosensitive magnetoliposomes as a new hyperthermic material, Drug Deliv., 4, 37, 10.3109/10717549709033186
Brero, F., Albino, M., Antoccia, A., Arosio, P., Avolio, M., Berardinelli, F., Bettega, D., Calzolari, P., Ciocca, M., and Corti, M. (2020). Hadron therapy, magnetic nanoparticles and hyperthermia: A promising combined tool for pancreatic cancer treatment. Nanomaterials, 10.
Umut, 2019, Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia, J. Colloid Interface Sci., 550, 199, 10.1016/j.jcis.2019.04.092
Niemirowicz, 2015, Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells, Int. J. Nanomed., 10, 3843, 10.2147/IJN.S76104
Maeda, 2001, The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting, Adv. Enzym. Regul., 41, 189, 10.1016/S0065-2571(00)00013-3
He, 2013, The transport pathways of polymer nanoparticles in MDCK epithelial cells, Biomaterials, 34, 4309, 10.1016/j.biomaterials.2013.01.100
Lesniak, 2013, Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency, J. Am. Chem. Soc., 135, 1438, 10.1021/ja309812z
Albanese, 2012, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng., 14, 1, 10.1146/annurev-bioeng-071811-150124
Muro, 2008, Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers, Mol. Ther., 16, 1450, 10.1038/mt.2008.127
Decuzzi, 2006, The adhesive strength of non-spherical particles mediated by specific interactions, Biomaterials, 27, 5307, 10.1016/j.biomaterials.2006.05.024
Devarajan, 2010, Particle shape: A new design parameter for passive targeting in splenotropic drug delivery, J. Pharm. Sci., 99, 2576, 10.1002/jps.22052
Eliezar, 2015, In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs, Biomacromolecules, 16, 515, 10.1021/bm501558d
Prasad, 2007, Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-MnxFe2–xO3 synthesized by a single step process, J. Mater. Chem., 17, 5042, 10.1039/b708156a
Jerry, 2008, Protein-passivated Fe3O4 nanoparticles: Low toxicity and rapid heating for thermal therapy, J. Mater. Chem., 18, 1204, 10.1039/b718745a
Hayashi, 2010, One-pot biofunctionalization of magnetic nanoparticles via thiol−ene click reaction for magnetic hyperthermia and magnetic resonance imaging, Chem. Mater., 22, 3768, 10.1021/cm100810g
Lortz, 2011, Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia, J. Magn. Magn. Mater., 323, 1054, 10.1016/j.jmmm.2010.12.003
Hayashi, 2013, Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment, Theranostics, 3, 366, 10.7150/thno.5860
Sonvico, 2005, Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments, Bioconjug. Chem., 16, 1181, 10.1021/bc050050z
Rothe, 2007, Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme, J. Neuro-Oncol., 81, 53, 10.1007/s11060-006-9195-0
DeNardo, 2005, Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy, Clin. Cancer Res., 11, 7087s, 10.1158/1078-0432.CCR-1004-0022
Jimbow, 2008, Melanin biology and translational research strategy; melanogenesis and nanomedicine as the basis for melanoma-targeted DDS and chemothermoimmunotherapy, Pigment Cell Melanoma Res., 21, 243
Chalkidou, 2011, In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment, J. Magn. Magn. Mater., 323, 775, 10.1016/j.jmmm.2010.10.043
Balcells, 2010, Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia, Nanomed. Nanotechnol. Biol. Med., 6, 362, 10.1016/j.nano.2009.09.003
Chen, 2020, DOX@ Ferumoxytol-Medical Chitosan as magnetic hydrogel therapeutic system for effective magnetic hyperthermia and chemotherapy in vitro, Colloids Surf. B Biointerfaces, 190, 110896, 10.1016/j.colsurfb.2020.110896
Jiang, 2017, Gadolinium-doped iron oxide nanoparticles induced magnetic field hyperthermia combined with radiotherapy increases tumour response by vascular disruption and improved oxygenation, Int. J. Hyperth., 33, 770
Kim, 2009, Targeting to carcinoma cells with chitosan-and starch-coated magnetic nanoparticles for magnetic hyperthermia, J. Biomed. Mater. Res. A, 88, 1, 10.1002/jbm.a.31775
Ghosh, 2011, Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia, J. Mater. Chem., 21, 13388, 10.1039/c1jm10092k
Lin, 2012, In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells, Acta Biomater., 8, 2704, 10.1016/j.actbio.2012.03.045
Ibarra, 2012, Controlled cell death by magnetic hyperthermia: Effects of exposure time, field amplitude, and nanoparticle concentration, Pharm. Res., 29, 1319, 10.1007/s11095-012-0710-z
Arcos, 2010, Magnetic mesoporous silica spheres for hyperthermia therapy, Acta Biomater., 6, 4522, 10.1016/j.actbio.2010.06.030
Sadhukha, 2013, Effective elimination of cancer stem cells by magnetic hyperthermia, Mol. Pharm., 10, 1432, 10.1021/mp400015b