Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: A first-principles perspective to recent synthesis

Applied Physics Reviews - Tập 5 Số 1 - 2018
D. Kecik1, A. Onen1, Mine Konuk1, Elif I. Gürbüz2, Fatih Ersan3, Seymur Cahangirov1, Ethem Aktürk3,4, Engin Durgun1, S. Çiraci2
1UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University 1 , Ankara 06800, Turkey
2Department of Physics, Bilkent University 2 , Ankara 06800, Turkey
3Department of Physics, Adnan Menderes University 3 , Aydin 09100, Turkey
4Nanotechnology Application and Research Center, Adnan Menderes University 4 , Aydin 09010, Turkey

Tóm tắt

Potential applications of bulk GaN and AlN crystals have made possible single and multilayer allotropes of these III-V compounds to be a focus of interest recently. As of 2005, the theoretical studies have predicted that GaN and AlN can form two-dimensional (2D) stable, single-layer (SL) structures being wide band gap semiconductors and showing electronic and optical properties different from those of their bulk parents. Research on these 2D structures have gained importance with recent experimental studies achieving the growth of ultrathin 2D GaN and AlN on substrates. It is expected that these two materials will open an active field of research like graphene, silicene, and transition metal dichalcogenides. This topical review aims at the evaluation of previous experimental and theoretical works until 2018 in order to provide input for further research attempts in this field. To this end, starting from three-dimensional (3D) GaN and AlN crystals, we review 2D SL and multilayer (ML) structures, which were predicted to be stable in free-standing states. These are planar hexagonal (or honeycomb), tetragonal, and square-octagon structures. First, we discuss earlier results on dynamical and thermal stability of these SL structures, as well as the predicted mechanical properties. Next, their electronic and optical properties with and without the effect of strain are reviewed and compared with those of the 3D parent crystals. The formation of multilayers, hence prediction of new periodic layered structures and also tuning their physical properties with the number of layers are other critical subjects that have been actively studied and discussed here. In particular, an extensive analysis pertaining to the nature of perpendicular interlayer bonds causing planar GaN and AlN to buckle is presented. In view of the fact that SL GaN and AlN can be fabricated only on a substrate, the question of how the properties of free-standing, SL structures are affected if they are grown on a substrate is addressed. We also examine recent works treating the composite structures of GaN and AlN joined commensurately along their zigzag and armchair edges and forming heterostructures, δ-doping, single, and multiple quantum wells, as well as core/shell structures. Finally, outlooks and possible new research directions are briefly discussed.

Từ khóa


Tài liệu tham khảo

1948, Phys. Rev., 74, 230, 10.1103/PhysRev.74.230

1949, Bell Labs Tech. J., 28, 344, 10.1002/j.1538-7305.1949.tb03641.x

1994, Appl. Phys. Lett., 64, 1687, 10.1063/1.111832

2000, The Blue Laser Diode, 2nd ed., 230

2000, Appl. Phys. Lett., 76, 22, 10.1063/1.125643

2008, Handbook of Nitride Semiconductors and Devices

1998, J. Phys. D: Appl. Phys., 31, 2653, 10.1088/0022-3727/31/20/001

2009, III-V compound SC for optoelectronic devices, Mater. Today, 12, 22, 10.1016/S1369-7021(09)70110-5

2015, Rev. Mod. Phys., 87, 1139, 10.1103/RevModPhys.87.1139

2004, Science, 306, 666, 10.1126/science.1102896

2004, Nat. Mater., 3, 404, 10.1038/nmat1134

2012, Nano Lett., 12, 161, 10.1021/nl203249a

2013, ACS Nano, 7, 5199, 10.1021/nn4009356

2010, Nano Lett., 10, 1271, 10.1021/nl903868w

2010, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805

2011, Nano Lett., 11, 5111, 10.1021/nl201874w

2005, Phys. Rev. B, 72, 075420, 10.1103/PhysRevB.72.075420

2009, Phys. Rev. Lett., 102, 236804, 10.1103/PhysRevLett.102.236804

2010, Phys. Rev. B, 81, 195120, 10.1103/PhysRevB.81.195120

2009, Phys. Rev. B, 80, 155453, 10.1103/PhysRevB.80.155453

2006, Phys. Rev. Lett., 96, 066102, 10.1103/PhysRevLett.96.066102

2010, Solid State Commun., 150, 1473, 10.1016/j.ssc.2010.05.031

2011, Appl. Surf. Sci., 257, 7845, 10.1016/j.apsusc.2011.04.042

2014, Appl. Phys. Lett., 105, 051604, 10.1063/1.4892351

2014, Phys. Rev. B, 89, 245431, 10.1103/PhysRevB.89.245431

2011, Appl. Phys. Lett., 98, 053102, 10.1063/1.3549299

2016, Appl. Phys. Express, 9, 095201, 10.7567/APEX.9.095201

2016, Nano Lett., 16, 4849, 10.1021/acs.nanolett.6b01225

2011, Phys. Rev. Lett., 107, 236101, 10.1103/PhysRevLett.107.236101

2013, Phys. Rev. B, 87, 165415, 10.1103/PhysRevB.87.165415

2015, Superlattices Microstruct., 79, 38, 10.1016/j.spmi.2014.12.012

2015, Phys. Rev. B, 91, 085430, 10.1103/PhysRevB.91.085430

2015, Phys. Rev. B, 92, 165408, 10.1103/PhysRevB.92.165408

2016, Phys. Rev. B, 93, 085431, 10.1103/PhysRevB.93.085431

2017, Phys. Rev. B, 95, 155435, 10.1103/PhysRevB.95.155435

2017, J. Phys. Chem. C, 121, 27098, 10.1021/acs.jpcc.7b08344

2017, Nano Lett., 17, 7345, 10.1021/acs.nanolett.7b03003

1997, Phys. Rev. Lett., 79, 2835, 10.1103/PhysRevLett.79.2835

2003, Nature, 422, 599, 10.1038/nature01551

2002, Appl. Phys. Lett., 80, 4813, 10.1063/1.1482137

2009, ACS Nano, 3, 1663, 10.1021/nn900580j

2009, Acta Mater., 57, 4001, 10.1016/j.actamat.2009.04.026

2012, Nanoscale Res. Lett., 7, 289, 10.1186/1556-276X-7-289

2014, Appl. Phys. Express, 7, 071001, 10.7567/APEX.7.071001

2015, J. Mater. Chem. C, 3, 7428, 10.1039/C5TC01556A

2015, Sci. Rep., 5, 7747, 10.1038/srep07747

2013, Appl. Phys. Lett., 103, 251605, 10.1063/1.4851239

2015, J. Cryst. Growth, 428, 93, 10.1016/j.jcrysgro.2015.07.030

2016, Nature Mater., 15, 1166, 10.1038/nmat4742

2010, Phys. Rev. B, 81, 085125, 10.1103/PhysRevB.81.085125

1977, Solid State Commun., 23, 815, 10.1016/0038-1098(77)90959-0

2003, J. Appl. Phys., 94, 3675, 10.1063/1.1600519

1993, Phys. Rev. B, 47, 12925, 10.1103/PhysRevB.47.12925

1994, Phys. Rev. B, 49, 14, 10.1103/PhysRevB.49.14

1992, Phys. Rev. B, 45, 83, 10.1103/PhysRevB.45.83

2000, Phys. Rev. B, 61, 6720, 10.1103/PhysRevB.61.6720

1994, Phys. Rev. B, 50, 2159, 10.1103/PhysRevB.50.2159

Wright, 1995, Phys. Rev. B, 51, 7866, 10.1103/PhysRevB.51.7866

1996, J. Appl. Phys., 79, 3343, 10.1063/1.361236

1997, Nature, 386, 351, 10.1038/386351a0

1992, Thin Solid Films, 215, 152, 10.1016/0040-6090(92)90430-J

1992, Phys. Rev. B, 45, 10123, 10.1103/PhysRevB.45.10123

1993, J. Appl. Phys., 73, 8198, 10.1063/1.353435

1989, J. Am. Ceram. Soc., 72, 2031, 10.1111/j.1151-2916.1989.tb06027.x

1994, J. Am. Ceram. Soc., 77, 3, 10.1111/j.1151-2916.1994.tb06951.x

1987, J. Phys. Chem. Solids, 48, 141, 10.1016/0022-3697(87)90153-3

2015, Mater. Chem. Phys., 157, 80, 10.1016/j.matchemphys.2015.03.019

2002, New J. Phys., 4, 64, 10.1088/1367-2630/4/1/364

2011, J. Appl. Phys., 109, 033514, 10.1063/1.3525983

1997, Jpn. J. Appl. Phys., Part 1, 36, 5393, 10.1143/JJAP.36.5393

1998, Appl. Phys. Lett., 73, 1688, 10.1063/1.122246

1999, Phys. Status Solidi A, 176, 45, 10.1002/(SICI)1521-396X(199911)176:1<45::AID-PSSA45>3.0.CO;2-0

2004, Appl. Phys. Lett., 85, 2175, 10.1063/1.1796525

2005, J. Appl. Phys., 97, 091101, 10.1063/1.1899760

2008, Nature Photon., 2, 77, 10.1038/nphoton.2007.293

1994, Phys. Rev. B, 50, 8433, 10.1103/PhysRevB.50.8433

1991, J. Appl. Phys., 69, 8423, 10.1063/1.347412

1988, CRC Handbook of Chemistry and Physics

2007, J. Comput. Chem., 28, 899, 10.1002/jcc.20575

2014, Phys. Rev. B, 90, 125118, 10.1103/PhysRevB.90.125118

2011, Phys. Rev. B, 84, 195105, 10.1103/PhysRevB.84.195105

1998, Phys. Rev. B, 57, 7043, 10.1103/PhysRevB.57.7043

1997, Phys. Rev. B, 56, R10024, 10.1103/PhysRevB.56.R10024

2000, Phys. Rev. B, 62, 8003, 10.1103/PhysRevB.62.8003

2013, Phys. Rev. B, 88, 214103, 10.1103/PhysRevB.88.214103

2003, Semicond. Sci. Technol., 18, 850, 10.1088/0268-1242/18/9/307

2005, J. Chem. Phys., 123, 174101, 10.1063/1.2085170

2012, Phys. Rev. B, 85, 195147, 10.1103/PhysRevB.85.195147

2008, Phys. Rev. B, 77, 075202, 10.1103/PhysRevB.77.075202

2012, Optik, 123, 2208, 10.1016/j.ijleo.2011.10.017

2012, New J. Phys., 14, 023006, 10.1088/1367-2630/14/2/023006

1998, Phys. Rev. B, 57, 6485, 10.1103/PhysRevB.57.6485

2005, New J. Phys., 7, 126, 10.1088/1367-2630/7/1/126

2005, Phys. Rev. B, 72, 245114, 10.1103/PhysRevB.72.245114

2008, J. Appl. Phys., 103, 073707, 10.1063/1.2903138

2007, Chin. Phys., 16, 3783, 10.1088/1009-1963/16/12/038

2016, Turk. J. Phys., 40, 219, 10.3906/fiz-1511-13

1995, Thin Solid Films, 266, 189, 10.1016/0040-6090(96)80022-8

2016, Phys. Status Solidi B, 253, 442, 10.1002/pssb.201552490

1994, Phys. Rev. B, 50, 4397, 10.1103/PhysRevB.50.4397

2010, Solid State Sci., 12, 665, 10.1016/j.solidstatesciences.2008.12.002

2000, Phys. Rev. B, 62, 16612, 10.1103/PhysRevB.62.16612

2009, Diamond Relat. Mater., 18, 1057, 10.1016/j.diamond.2008.11.007

1992, Appl. Phys. Lett., 60, 2491, 10.1063/1.106943

2009, J. Appl. Phys., 106, 076104, 10.1063/1.3239516

2008, Commun. Theor. Phys., 50, 990, 10.1088/0253-6102/50/4/41

1993, J. Mater. Res., 8, 1922, 10.1557/JMR.1993.1922

2013, J. Phys.: Condens. Matter, 25, 345302, 10.1088/0953-8984/25/34/345302

2015, Sci. Rep., 5, 17902, 10.1038/srep17902

2017, Phys. Rev. B, 96, 205427, 10.1103/PhysRevB.96.205427

2017, Solid State Commun., 250, 18, 10.1016/j.ssc.2016.11.011

2017, J. Phys. Chem. C, 121, 6605, 10.1021/acs.jpcc.6b11270

2013, Appl. Phys. A, 113, 483, 10.1007/s00339-013-7551-4

2015, Phys. Chem. Chem. Phys., 17, 9533, 10.1039/C5CP00601E

2017, Appl. Phys. Lett., 110, 012103, 10.1063/1.4973753

2016, Nanotechnology, 27, 145601, 10.1088/0957-4484/27/14/145601

2014, J. Mater. Chem. A, 2, 17971, 10.1039/C4TA03944K

2016, Nanoscale, 8, 19287, 10.1039/C6NR07700E

2015, Chem. Phys., 455, 73, 10.1016/j.chemphys.2015.03.012

2017, Phys. Rev. Mater., 1, 024003, 10.1103/PhysRevMaterials.1.024003

2013, Phys. Rev. B, 87, 155304, 10.1103/PhysRevB.87.155304

1986, Introduction to Solid State Physics

2014, Phys. Rev. B, 90, 035448, 10.1103/PhysRevB.90.035448

2014, Phys. Rev. B, 90, 085426, 10.1103/PhysRevB.90.085426

2013, Nature, 499, 419, 10.1038/nature12385

2014, Phys. Rev. B, 89, 235319, 10.1103/PhysRevB.89.235319

2013, Phys. Rev. Lett., 111, 216805, 10.1103/PhysRevLett.111.216805

2006, Phys. Rev. Lett., 96, 126104, 10.1103/PhysRevLett.96.126104

2003, Appl. Phys. Lett., 83, 5163, 10.1063/1.1633965

2004, Appl. Phys. Lett, 84, 3501, 10.1063/1.1738929

2013, Phys. Rev. B, 87, 235209, 10.1103/PhysRevB.87.235209

2011, Phys. Rev. B, 84, 075218, 10.1103/PhysRevB.84.075218

2008, Phys. Rev. B, 77, 035306, 10.1103/PhysRevB.77.035306

2017, 2D Mater., 4, 022004, 10.1088/2053-1583/aa6432

2010, J. Appl. Phys., 108, 103701, 10.1063/1.3505752

2013, Appl. Phys. Express, 6, 061003, 10.7567/APEX.6.061003

2016, Appl. Phys. Lett., 109, 241102, 10.1063/1.4971968

2008, Phys. Rev. B, 78, 245402, 10.1103/PhysRevB.78.245402

2008, Appl. Phys. Lett., 92, 173118, 10.1063/1.2919525

2015, J. Phys. Chem. C, 119, 13248, 10.1021/acs.jpcc.5b01598

2015, Phys. Rev. B, 91, 195445, 10.1103/PhysRevB.91.195445

2017, Phys. Rev. B, 95, 075434, 10.1103/PhysRevB.95.075434

2017, Phys. Rev. B, 95, 045302, 10.1103/PhysRevB.95.045302

2013, J. Appl. Phys., 113, 193706, 10.1063/1.4805057

2013, Solid State Commun., 172, 24, 10.1016/j.ssc.2013.08.026

2015, J. Phys. Chem. C, 119, 20911, 10.1021/acs.jpcc.5b04695