Fundamental studies of ultrasonic melt processing
Tài liệu tham khảo
Eskin, 1965
Eskin, 1988
Abramov, 1972
Eskin, 2015
1968
Il’ichev, 1969, Cavitation strength of liquids and onset of cavitation, Proc. Acoust. Inst. Acad. Sci. USSR, 6, 16
Kapustina, 1970, 253
Hunt, 1966, Nucleation of solid in an undercooled liquid by cavitation, J. Appl. Phys., 31, 254, 10.1063/1.1707821
Konovalov, 1962, Ultrasonic capillary effect, Dokl. Akad. Nauk. Belorus., 6, 492
Prokhorenko, 1981
Swallowe, 1989, A photographic study of the effect of ultrasound on solidification, Acta. Metall., 37, 961, 10.1016/0001-6160(89)90023-0
Tudela, 2014, Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review, Ultrason. Sonochem., 21, 909, 10.1016/j.ultsonch.2013.11.012
Louisnard, 2012, A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation, Ultrason. Sonochem., 19, 56, 10.1016/j.ultsonch.2011.06.007
Dogan, 2016, Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor, Ultrason. Sonochem., 30, 87, 10.1016/j.ultsonch.2015.11.011
Trujillo, 2018, A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part I: theory and validation at low acoustic pressure amplitudes, Ultrason. Sonochem., 47, 75, 10.1016/j.ultsonch.2018.04.014
Louisnard, 2017, A viable method to predict acoustic streaming in presence of cavitation, Ultrason. Sonochem., 35, 518, 10.1016/j.ultsonch.2016.09.013
Tzanakis, 2016, Calibration and performance assessment of an innovative high-temperature cavitometer, Sens. Actuators, A, 240, 57, 10.1016/j.sna.2016.01.024
Tzanakis, 2016, Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an advanced cavitometer, J. Mater. Process. Technol., 229, 582, 10.1016/j.jmatprotec.2015.10.009
Tzanakis, 2017, Characterizing the cavitation development and acoustic spectrum in various liquids, Ultrason. Sonochem., 34, 651, 10.1016/j.ultsonch.2016.06.034
Xu, 2016, Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al–10Cu melts, Ultrason. Sonochem., 31, 355, 10.1016/j.ultsonch.2016.01.017
Tzanakis, 2015, In situ observation and analysis of ultrasonic capillary effect in molten aluminium, Ultrason. Sonochem., 27, 72, 10.1016/j.ultsonch.2015.04.029
Tzanakis, 2016, Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium, Mater. Des., 90, 979, 10.1016/j.matdes.2015.11.010
Eskin, 2015, Application of a plate sonotrode to ultrasonic degassing of aluminum melt: acoustic measurements and feasibility study, J. Mater. Process. Technol., 222, 148, 10.1016/j.jmatprotec.2015.03.006
Wijngaarden, 1968, On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech., 33, 465, 10.1017/S002211206800145X
Caflisch, 1985, Effective equations for wave propagation in bubbly liquids, J. Fluid Mech., 153, 259, 10.1017/S0022112085001252
Foldy, 1945, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67, 107, 10.1103/PhysRev.67.107
Lebon, 2015, Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field, Phys. Rev. E, 92, 10.1103/PhysRevE.92.043004
Doinikov, 2001, Translational motion of two interacting bubbles in a strong acoustic field, Phys. Rev. E, 64, 10.1103/PhysRevE.64.026301
Lebon, 2017, Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model, Ultrason. Sonochem., 37, 660, 10.1016/j.ultsonch.2017.02.031
Huang, 2014, Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt, Ultrason. Sonochem., 21, 1275, 10.1016/j.ultsonch.2013.12.024
Tan, 2015, High-speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes, Metall. Mater. Trans. A, 46A, 2851, 10.1007/s11661-015-2872-x
Wang, 2018, Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound, Acta Mater., 144, 505, 10.1016/j.actamat.2017.10.067
Tan, 2015, 126
Minnaert, 1933, On musical air-bubbles and the sounds of running water, London Edinburgh Dublin Philos. Mag. J. Sci., 16, 235, 10.1080/14786443309462277
Choi, 2012, Effect of combined addition of Cu and aluminum oxide nanoparticles on mechanical properties and microstructure of Al-7Si-0.3Mg Alloy, Metall. Mater. Trans. A, 43A, 738, 10.1007/s11661-011-0905-7
Vorozhtsov, 2015, The application of external fields to the manufacturing of novel dense composite master alloys and aluminum-based nanocomposites, Metall. Mater. Trans. A, 46A, 2870, 10.1007/s11661-015-2850-3
Kudryashova, 2016, On the mechanism of ultrasound-driven de-agglomeration of nanoparticle agglomerates in aluminum melt, JOM, 68, 1307, 10.1007/s11837-016-1851-z
Mirihanage, 2016, Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites, Mater. Lett., 164, 484, 10.1016/j.matlet.2015.11.022
Schenker, 2013, PIV quantification and numerical modelling of the flow induced by an ultrasonic horn, Ultrason. Sonochem., 20, 502, 10.1016/j.ultsonch.2012.04.014
Abramov, 1970, Crystallization of Metals, 427
Wang, 2018, In-situ synchrotron X-ray radiography observation of primary Al2Cu intermetallic growth on fragments of aluminium oxide film, Mater. Lett., 213, 303, 10.1016/j.matlet.2017.11.090
Wang, 2016, A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state, Acta Mater., 116, 354, 10.1016/j.actamat.2016.06.056
Wang, 2017, Influence of ultrasonic treatment on the formation of primary Al3Zr in an Al-0.4 Zr alloy, Trans. Nonferrous Met. Soc. China, 27, 977, 10.1016/S1003-6326(17)60115-8
Sreekumar, 2017, Prospects of in-situ α-Al2O3 as an inoculant in aluminum: a feasibility study, J. Mater. Eng. Perform., 26, 4166, 10.1007/s11665-017-2853-x
Sreekumar, 2017, Potential of Al-Ti-MgAl2O4 master alloy and ultrasonic cavitation on the grain refinement of a cast aluminum alloy, Metall. Mater. Trans. B, 48B, 208, 10.1007/s11663-016-0824-5
Atamanenko, 2010, Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti, Metall. Mater. Trans. A, 41A, 2056, 10.1007/s11661-010-0232-4
Atamanenko, 2011, On the mechanism of grain refinement in Al–Zr–Ti alloys, J. Alloys Compd., 509, 57, 10.1016/j.jallcom.2010.09.046
Shu, 2012, A high-speed imaging and modeling study of dendrite fragmentation caused by ultrasonic cavitation, Metall. Mater. Trans. A, 44A, 3755, 10.1007/s11661-012-1188-3
Mi, 2015, In situ synchrotron X-ray study of ultrasound cavitation and its effect on solidification microstructures, Metall. Mater. Trans. B, 46B, 1615, 10.1007/s11663-014-0256-z
Wang, 2017, In-situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys, Ultrason. Sonochem., 39, 66, 10.1016/j.ultsonch.2017.03.057
G.S.B. Lebon, A. Kao, K. Pericleous, The uncertain effect of cavitating bubbles on dendrites, in: Proc. 6th Decenn. Int. Conf. Solidif. Process., Old Windsor, UK, 2017, pp. 554–557.
Wang, 2017, A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35Cu alloy induced by ultrasonic melt processing, Acta Mater., 141, 142, 10.1016/j.actamat.2017.09.010
Eskin, 2008, New developments in the technology of ultrasonic melt treatment if light alloys, Tsvetn. Met., 3, 105
Eskin, 2003, Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt, Ultrason. Sonochem., 10, 297, 10.1016/S1350-4177(02)00158-X
Cao, 2008, Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing, Mater. Sci. Eng. A., 486, 357, 10.1016/j.msea.2007.09.054
Manoylov, 2017, Coupling of acoustic cavitation with Dem-based particle solvers for modeling de-agglomeration of particle clusters in liquid metals, Metall. Mater. Trans. A, 48A, 5616, 10.1007/s11661-017-4321-5
Kudryashova, 2017, Ultrasonic effect on the penetration of the metallic melt into submicron particles and their agglomerates, Russ. J. Non-Ferrous Met., 58, 427, 10.3103/S1067821217040101
Vorozhtsov, 2015, Synthesis of micro- and nanoparticles of metal oxides and their application for reinforcement of Al-based alloys, Adv. Mater. Sci. Eng., 2015, 10.1155/2015/718207