Fundamental studies of ultrasonic melt processing

Ultrasonics Sonochemistry - Tập 52 - Trang 455-467 - 2019
D.G. Eskin1,2, I. Tzanakis3, F. Wang1, G.S.B. Lebon1, T. Subroto1, K. Pericleous4, J. Mi5
1BCAST, Brunel University London, Uxbridge UB8 3PH, UK
2Tomsk State University, Tomsk 634050, Russian Federation
3MEMS, Oxford Brookes University, MEMS, Oxford OX33 1HX, UK
4CSEG, University of Greenwich, SE10 9LS, UK
5School of Engineering & Computer Science, University of Hull, Hull HU6 7RX, UK

Tài liệu tham khảo

Eskin, 1965 Eskin, 1988 Abramov, 1972 Eskin, 2015 1968 Il’ichev, 1969, Cavitation strength of liquids and onset of cavitation, Proc. Acoust. Inst. Acad. Sci. USSR, 6, 16 Kapustina, 1970, 253 Hunt, 1966, Nucleation of solid in an undercooled liquid by cavitation, J. Appl. Phys., 31, 254, 10.1063/1.1707821 Konovalov, 1962, Ultrasonic capillary effect, Dokl. Akad. Nauk. Belorus., 6, 492 Prokhorenko, 1981 Swallowe, 1989, A photographic study of the effect of ultrasound on solidification, Acta. Metall., 37, 961, 10.1016/0001-6160(89)90023-0 Tudela, 2014, Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review, Ultrason. Sonochem., 21, 909, 10.1016/j.ultsonch.2013.11.012 Louisnard, 2012, A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation, Ultrason. Sonochem., 19, 56, 10.1016/j.ultsonch.2011.06.007 Dogan, 2016, Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor, Ultrason. Sonochem., 30, 87, 10.1016/j.ultsonch.2015.11.011 Trujillo, 2018, A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part I: theory and validation at low acoustic pressure amplitudes, Ultrason. Sonochem., 47, 75, 10.1016/j.ultsonch.2018.04.014 Louisnard, 2017, A viable method to predict acoustic streaming in presence of cavitation, Ultrason. Sonochem., 35, 518, 10.1016/j.ultsonch.2016.09.013 Tzanakis, 2016, Calibration and performance assessment of an innovative high-temperature cavitometer, Sens. Actuators, A, 240, 57, 10.1016/j.sna.2016.01.024 Tzanakis, 2016, Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an advanced cavitometer, J. Mater. Process. Technol., 229, 582, 10.1016/j.jmatprotec.2015.10.009 Tzanakis, 2017, Characterizing the cavitation development and acoustic spectrum in various liquids, Ultrason. Sonochem., 34, 651, 10.1016/j.ultsonch.2016.06.034 Xu, 2016, Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al–10Cu melts, Ultrason. Sonochem., 31, 355, 10.1016/j.ultsonch.2016.01.017 Tzanakis, 2015, In situ observation and analysis of ultrasonic capillary effect in molten aluminium, Ultrason. Sonochem., 27, 72, 10.1016/j.ultsonch.2015.04.029 Tzanakis, 2016, Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium, Mater. Des., 90, 979, 10.1016/j.matdes.2015.11.010 Eskin, 2015, Application of a plate sonotrode to ultrasonic degassing of aluminum melt: acoustic measurements and feasibility study, J. Mater. Process. Technol., 222, 148, 10.1016/j.jmatprotec.2015.03.006 Wijngaarden, 1968, On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech., 33, 465, 10.1017/S002211206800145X Caflisch, 1985, Effective equations for wave propagation in bubbly liquids, J. Fluid Mech., 153, 259, 10.1017/S0022112085001252 Foldy, 1945, The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67, 107, 10.1103/PhysRev.67.107 Lebon, 2015, Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field, Phys. Rev. E, 92, 10.1103/PhysRevE.92.043004 Doinikov, 2001, Translational motion of two interacting bubbles in a strong acoustic field, Phys. Rev. E, 64, 10.1103/PhysRevE.64.026301 Lebon, 2017, Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model, Ultrason. Sonochem., 37, 660, 10.1016/j.ultsonch.2017.02.031 Huang, 2014, Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt, Ultrason. Sonochem., 21, 1275, 10.1016/j.ultsonch.2013.12.024 Tan, 2015, High-speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes, Metall. Mater. Trans. A, 46A, 2851, 10.1007/s11661-015-2872-x Wang, 2018, Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound, Acta Mater., 144, 505, 10.1016/j.actamat.2017.10.067 Tan, 2015, 126 Minnaert, 1933, On musical air-bubbles and the sounds of running water, London Edinburgh Dublin Philos. Mag. J. Sci., 16, 235, 10.1080/14786443309462277 Choi, 2012, Effect of combined addition of Cu and aluminum oxide nanoparticles on mechanical properties and microstructure of Al-7Si-0.3Mg Alloy, Metall. Mater. Trans. A, 43A, 738, 10.1007/s11661-011-0905-7 Vorozhtsov, 2015, The application of external fields to the manufacturing of novel dense composite master alloys and aluminum-based nanocomposites, Metall. Mater. Trans. A, 46A, 2870, 10.1007/s11661-015-2850-3 Kudryashova, 2016, On the mechanism of ultrasound-driven de-agglomeration of nanoparticle agglomerates in aluminum melt, JOM, 68, 1307, 10.1007/s11837-016-1851-z Mirihanage, 2016, Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites, Mater. Lett., 164, 484, 10.1016/j.matlet.2015.11.022 Schenker, 2013, PIV quantification and numerical modelling of the flow induced by an ultrasonic horn, Ultrason. Sonochem., 20, 502, 10.1016/j.ultsonch.2012.04.014 Abramov, 1970, Crystallization of Metals, 427 Wang, 2018, In-situ synchrotron X-ray radiography observation of primary Al2Cu intermetallic growth on fragments of aluminium oxide film, Mater. Lett., 213, 303, 10.1016/j.matlet.2017.11.090 Wang, 2016, A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state, Acta Mater., 116, 354, 10.1016/j.actamat.2016.06.056 Wang, 2017, Influence of ultrasonic treatment on the formation of primary Al3Zr in an Al-0.4 Zr alloy, Trans. Nonferrous Met. Soc. China, 27, 977, 10.1016/S1003-6326(17)60115-8 Sreekumar, 2017, Prospects of in-situ α-Al2O3 as an inoculant in aluminum: a feasibility study, J. Mater. Eng. Perform., 26, 4166, 10.1007/s11665-017-2853-x Sreekumar, 2017, Potential of Al-Ti-MgAl2O4 master alloy and ultrasonic cavitation on the grain refinement of a cast aluminum alloy, Metall. Mater. Trans. B, 48B, 208, 10.1007/s11663-016-0824-5 Atamanenko, 2010, Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti, Metall. Mater. Trans. A, 41A, 2056, 10.1007/s11661-010-0232-4 Atamanenko, 2011, On the mechanism of grain refinement in Al–Zr–Ti alloys, J. Alloys Compd., 509, 57, 10.1016/j.jallcom.2010.09.046 Shu, 2012, A high-speed imaging and modeling study of dendrite fragmentation caused by ultrasonic cavitation, Metall. Mater. Trans. A, 44A, 3755, 10.1007/s11661-012-1188-3 Mi, 2015, In situ synchrotron X-ray study of ultrasound cavitation and its effect on solidification microstructures, Metall. Mater. Trans. B, 46B, 1615, 10.1007/s11663-014-0256-z Wang, 2017, In-situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys, Ultrason. Sonochem., 39, 66, 10.1016/j.ultsonch.2017.03.057 G.S.B. Lebon, A. Kao, K. Pericleous, The uncertain effect of cavitating bubbles on dendrites, in: Proc. 6th Decenn. Int. Conf. Solidif. Process., Old Windsor, UK, 2017, pp. 554–557. Wang, 2017, A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35Cu alloy induced by ultrasonic melt processing, Acta Mater., 141, 142, 10.1016/j.actamat.2017.09.010 Eskin, 2008, New developments in the technology of ultrasonic melt treatment if light alloys, Tsvetn. Met., 3, 105 Eskin, 2003, Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt, Ultrason. Sonochem., 10, 297, 10.1016/S1350-4177(02)00158-X Cao, 2008, Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing, Mater. Sci. Eng. A., 486, 357, 10.1016/j.msea.2007.09.054 Manoylov, 2017, Coupling of acoustic cavitation with Dem-based particle solvers for modeling de-agglomeration of particle clusters in liquid metals, Metall. Mater. Trans. A, 48A, 5616, 10.1007/s11661-017-4321-5 Kudryashova, 2017, Ultrasonic effect on the penetration of the metallic melt into submicron particles and their agglomerates, Russ. J. Non-Ferrous Met., 58, 427, 10.3103/S1067821217040101 Vorozhtsov, 2015, Synthesis of micro- and nanoparticles of metal oxides and their application for reinforcement of Al-based alloys, Adv. Mater. Sci. Eng., 2015, 10.1155/2015/718207