Fundamental Solutions of Linear Differential Equations in the Sense of Mnemofunctions

Nikolai Ya. Radyno1, Vassilis G. Papanicolaou2
1Institute of Mathematics, National Academy of Sciences, Minsk, Belarus
2Department of Mathematics and Statistics, Wichita State University, Wichita

Tóm tắt

In this paper we discuss the definition and construction of the fundamental solution of a linear differential equation with constant coefficients in the algebra of mnemofunctions. This algebra contains the tempered distributions. We also present some examples including a physical illustration of our results for the equation Δu = δ.

Tài liệu tham khảo

A. B. Antonevich and Ya V. Radyno, On a general method of construction of generalized functions, Dokl. Acad. Nauk USSR 318, 267-270 (1991). N. N. Bogolubov and D. V. Shirkov, Introduction to Quantum Field Theory, Nauka, Moscow, 1976. J. F. Colombeau, Elementary Introduction to New Generalized Functions, North-Holland, Amsterdam, 1985. Yu V. Egorov, On the theory of generalized functions, Usp. Mat. Nauk 45, 3-40 (1990). L. Ehrenpries, Solutions of some problems of division, Amer. J. Math. 76, 883-903 (1954). L. Hörmander, On the division of distributions by polynomials, Ark. Mat. 6, 555-568 (1958). A. N. Krylov, Differential Equations of Mathematical Physics, Academy of Sciences USSR, Leningrad, 1933. B. Malgrange, Equations aux dériverées partielles à coefficients constants, 1. Solution élémentair, C. R. Acad. Sci. (Pris) 237, 1620-1622 (1953). Ya V. Radyno and Fu Than Ngo, The differential equations in the algebra of the new generalized functions, Dokl. Acad. N. Belarusi 37, 5-9 (1993). Ya V. Radyno, Fu Than Ngo, and Sabra Ramadan, Fourier transformation in the algebra of new generalized functions, Dokl. Ross. Acad. Nauk 327, 20-24 (1992). L. Schwartz, Theorie des Distributions, Vols. 1 and 2, Paris, 1950–1951. L. Schwartz, Sur l'impossibilitie de la multiplication des distributions, C. R. Acad. Sci. (Paris) 239, 847-848 (1954). F. Trèves, Solution élémentaire d'équations aux dériveés partielles dépend d'un paramètre, C. R. Acad. Sci. (Paris) 242, 1250-1252 (1956).