Functions of tissue-resident eosinophils
Tóm tắt
Từ khóa
Tài liệu tham khảo
Drissen, R. et al. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17, 666–676 (2016).
Acharya, K. R. & Ackerman, S. J. Eosinophil granule proteins: form and function. J. Biol. Chem. 289, 17406–17415 (2014).
Lee, J. J. et al. Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J. Allergy Clin. Immunol. 130, 572–584 (2012).
Huang, L. et al. Eosinophil-derived IL-10 supports chronic nematode infection. J. Immunol. 193, 4178–4187 (2014).
Huang, L. & Appleton, J. A. Eosinophils in helminth infection: defenders and dupes. Trends Parasitol. 32, 798–807 (2016).
Makepeace, B. L., Martin, C., Turner, J. D. & Specht, S. Granulocytes in helminth infection — who is calling the shots? Curr. Med. Chem. 19, 1567–1586 (2012).
Huang, L. et al. Eosinophils and IL-4 support nematode growth coincident with an innate response to tissue injury. PLoS Pathog. 11, e1005347 (2015).
Neves, J. S., Perez, S. A., Spencer, L. A., Melo, R. C. & Weller, P. F. Subcellular fractionation of human eosinophils: isolation of functional specific granules on isoosmotic density gradients. J. Immunol. Methods 344, 64–72 (2009).
Kato, M. et al. Eosinophil infiltration and degranulation in normal human tissue. Anat. Rec. 252, 418–425 (1998).
Yu, Y. R. et al. A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS ONE 11, e0150606 (2016).
Diener, K. R., Robertson, S. A., Hayball, J. D. & Lousberg, E. L. Multi-parameter flow cytometric analysis of uterine immune cell fluctuations over the murine estrous cycle. J. Reproductive Immunol. 113, 61–67 (2016).
Voehringer, D., van Rooijen, N. & Locksley, R. M. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J. Leukoc. Biol. 81, 1434–1444 (2007).
Throsby, M., Herbelin, A., Pleau, J. M. & Dardenne, M. CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J. Immunol. 165, 1965–1975 (2000).
Jung, Y. & Rothenberg, M. E. Roles and regulation of gastrointestinal eosinophils in immunity and disease. J. Immunol. 193, 999–1005 (2014).
Percopo, C. M. et al. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J. Leukoc. Biol. 101, 321–328 (2017).
Le-Carlson, M. et al. Markers of antigen presentation and activation on eosinophils and T cells in the esophageal tissue of patients with eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 56, 257–262 (2013).
Patel, A. J. et al. Increased HLA-DR expression on tissue eosinophils in eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 51, 290–294 (2010).
Sedgwick, J. B. et al. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J. Immunol. 149, 3710–3718 (1992).
Cagnoni, E. F. et al. Bronchopulmonary lymph nodes and large airway cell trafficking in patients with fatal asthma. J. Allergy Clin. Immunol. 135, 1352–1357.e9 (2015).
Mesnil, C. et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Invest. 126, 3279–3295 (2016).
Bettigole, S. E. et al. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 16, 829–837 (2015). This study implicates IRE1 α –XBP1 signalling, a key component of the unfolded protein response pathway, in the terminal maturation of eosinophil progenitors. These data provide a link between eosinophilopoiesis and physiological endoplasmic reticulum stress in eosinophil-committed precursors.
Matthews, S. P., McMillan, S. J., Colbert, J. D., Lawrence, R. A. & Watts, C. Cystatin F ensures eosinophil survival by regulating granule biogenesis. Immunity 44, 795–806 (2016).
Doyle, A. D. et al. Expression of the secondary granule proteins major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX) is required for eosinophilopoiesis in mice. Blood 122, 781–790 (2013). This study shows that concomitant loss of two of the main granule-derived cationic proteins (MBP1 and EPX) results in selective loss of eosinophil lineage-committed progenitors. This provides, for the first time, a link between granule protein expression and eosinophilopoiesis.
Spencer, L. A. et al. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 85, 117–123 (2009). This study shows that blood eosinophils from healthy humans constitutively contain preformed stores of various cytokines that are rapidly and differentially released in response to specific agonists.
Moqbel, R. et al. Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J. Immunol. 155, 4939–4947 (1995).
Beil, W. J., Weller, P. F., Tzizik, D. M., Galli, S. J. & Dvorak, A. M. Ultrastructural immunogold localization of tumor necrosis factor-alpha to the matrix compartment of eosinophil secondary granules in patients with idiopathic hypereosinophilic syndrome. J. Histochem. Cytochem. 41, 1611–1615 (1993).
Liu, L. Y. et al. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J. Immunol. 179, 4840–4848 (2007).
Shen, Z. J., Esnault, S. & Malter, J. S. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat. Immunol. 6, 1280–1287 (2005).
Chu, V. T. & Berek, C. Immunization induces activation of bone marrow eosinophils required for plasma cell survival. Eur. J. Immunol. 42, 130–137 (2012). This study suggests that antigen-dependent activation primes eosinophils to provide pro-survival signals to plasma cells within bone marrow niches.
Rose, C. E. Jr. et al. Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell. Mol. Immunol. 7, 361–374 (2010).
Kanda, A. et al. Th2-activated eosinophils release Th1 cytokines that modulate allergic inflammation. Allergol. Int. 64 (Suppl.), S71–S73 (2015).
Gessner, A., Mohrs, K. & Mohrs, M. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J. Immunol. 174, 1063–1072 (2005).
Melo, R. C. et al. Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic 6, 1047–1057 (2005).
Melo, R. C., Dvorak, A. M. & Weller, P. F. Electron tomography and immunonanogold electron microscopy for investigating intracellular trafficking and secretion in human eosinophils. J. Cell. Mol. Med. 12, 1416–1419 (2008).
Melo, R. C. et al. Vesicle-mediated secretion of human eosinophil granule-derived major basic protein. Lab. Invest. 89, 769–781 (2009).
Melo, R. C., Spencer, L. A., Dvorak, A. M. & Weller, P. F. Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. J. Leukoc. Biol. 83, 229–236 (2008).
Melo, R. C. & Weller, P. F. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy. Exp. Cell Res. 347, 385–390 (2016).
Scepek, S., Moqbel, R. & Lindau, M. Compound exocytosis and cumulative degranulation by eosinophils and their role in parasite killing. Parasitol. Today 10, 276–278 (1994).
Persson, C. & Uller, L. Primary lysis of eosinophils as a major mode of activation of eosinophils in human diseased tissues. Nat. Rev. Immunol. 13, 902 (2013).
Ueki, S. et al. Eosinophil extracellular trap cell death-derived DNA traps: their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 137, 258–267 (2016).
Ueki, S. et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 121, 2074–2083 (2013).
Persson, C. G. & Erjefalt, J. S. “Ultimate activation” of eosinophils in vivo: lysis and release of clusters of free eosinophil granules (Cfegs). Thorax 52, 569–574 (1997).
Persson, C. G. & Erjefalt, J. S. Eosinophil lysis and free granules: an in vivo paradigm for cell activation and drug development. Trends Pharmacol. Sci. 18, 117–123 (1997).
Persson, C. G. Centennial notions of asthma as an eosinophilic, desquamative, exudative, and steroid-sensitive disease. Lancet 350, 1021–1024 (1997).
Erjefalt, J. S. & Persson, C. G. New aspects of degranulation and fates of airway mucosal eosinophils. Am. J. Respir. Crit. Care Med. 161, 2074–2085 (2000).
Erjefalt, J. S. et al. Allergen-induced eosinophil cytolysis is a primary mechanism for granule protein release in human upper airways. Am. J. Respir. Crit. Care Med. 160, 304–312 (1999).
Watanabe, K., Misu, T., Inoue, S. & Edamatsu, H. Cytolysis of eosinophils in nasal secretions. Ann. Otol. Rhinol. Laryngol. 112, 169–173 (2003).
Greiff, L., Erjefalt, J. S., Andersson, M., Svensson, C. & Persson, C. G. Generation of clusters of free eosinophil granules (Cfegs) in seasonal allergic rhinitis. Allergy 53, 200–203 (1998).
Uller, L., Andersson, M., Greiff, L., Persson, C. G. & Erjefalt, J. S. Occurrence of apoptosis, secondary necrosis, and cytolysis in eosinophilic nasal polyps. Am. J. Respir. Crit. Care Med. 170, 742–747 (2004).
Gonzalez, E. B., Swedo, J. L., Rajaraman, S., Daniels, J. C. & Grant, J. A. Ultrastructural and immunohistochemical evidence for release of eosinophilic granules in vivo: cytotoxic potential in chronic eosinophilic pneumonia. J. Allergy Clin. Immunol. 79, 755–762 (1987).
Grantham, J. G., Meadows, J. A., 3rd & Gleich, G. J. Chronic eosinophilic pneumonia. Evidence for eosinophil degranulation and release of major basic protein. Am. J. Med. 80, 89–94 (1986).
Tajirian, A., Ross, R., Zeikus, P. & Robinson-Bostom, L. Subcutaneous fat necrosis of the newborn with eosinophilic granules. J. Cutan. Pathol. 34, 588–590 (2007).
Chikwava, K. R., Savell, V. H. Jr & Boyd, T. K. Fatal cephalosporin-induced acute hypersensitivity myocarditis. Pediatr. Cardiol. 27, 777–780 (2006).
Gutierrez-Pena, E. J., Knab, J. & Buttner, D. W. Immunoelectron microscopic evidence for release of eosinophil granule matrix protein onto microfilariae of Onchocerca volvulus in the skin after exposure to amocarzine. Parasitol. Res. 84, 607–615 (1998).
Daneshpouy, M. et al. Activated eosinophils in upper gastrointestinal tract of patients with graft-versus-host disease. Blood 99, 3033–3040 (2002).
Aceves, S. S., Newbury, R. O., Dohil, R., Bastian, J. F. & Broide, D. H. Esophageal remodeling in pediatric eosinophilic esophagitis. J. Allergy Clin. Immunol. 119, 206–212 (2007).
Mueller, S., Aigner, T., Neureiter, D. & Stolte, M. Eosinophil infiltration and degranulation in oesophageal mucosa from adult patients with eosinophilic oesophagitis: a retrospective and comparative study on pathological biopsy. J. Clin. Pathol. 59, 1175–1180 (2006).
Saffari, H. et al. Electron microscopy elucidates eosinophil degranulation patterns in patients with eosinophilic esophagitis. J. Allergy Clin. Immunol. 133, 1728–1734.e1 (2014). This electron microscopy study used more than 1,500 images obtained from specimens taken from nine patients with eosinophilic oesophagitis to quantitatively assess degranulation patterns in human eosinophils in vivo . It showed that more than 80% of eosinophils have signs of cytolytic release of free granules.
Shamri, R. et al. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. FASEB J. 26, 2084–2093 (2012).
Boyer, D., Vargas, S. O., Slattery, D., Rivera-Sanchez, Y. M. & Colin, A. A. Churg–Strauss syndrome in children: a clinical and pathologic review. Pediatrics 118, e914–e920 (2006).
Neves, J. S. et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc. Natl Acad. Sci. USA 105, 18478–18483 (2008).
Neves, J. S., Radke, A. L. & Weller, P. F. Cysteinyl leukotrienes acting via granule membrane expressed receptors elicit secretion from within cell-free human eosinophil granules. J. Allergy Clin. Immunol. 125, 477–482 (2010). This paper provides the first demonstration that extracellular, cell-free eosinophil granules express outwardly oriented, functional cytokine receptors and G protein-coupled receptors, as well as intragranular signal transduction molecules, and are competent to undergo differential, stimulus-induced secretion.
Melo, R. C., Morgan, E., Monahan-Earley, R., Dvorak, A. M. & Weller, P. F. Pre-embedding immunogold labeling to optimize protein localization at subcellular compartments and membrane microdomains of leukocytes. Nat. Protoc. 9, 2382–2394 (2014).
Melo, R. C., Perez, S. A., Spencer, L. A., Dvorak, A. M. & Weller, P. F. Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6, 866–879 (2005).
Melo, R. C., Dvorak, A. M. & Weller, P. F. Contributions of electron microscopy to understand secretion of immune mediators by human eosinophils. Microsc. Microanal. 16, 653–660 (2010).
Spencer, L. A. et al. Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc. Natl Acad. Sci. USA 103, 3333–3338 (2006). This study shows that a granule-derived cytokine can be mobilized into secretory vesicles and chaperoned through the vesicular compartment bound to its cognate receptor during eosinophil PMD.
Bagnasco, D. et al. Targeting interleukin-5 or interleukin-5Ralpha: safety considerations. Drug Saf. 40, 559–570 (2017).
Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).
Jacobsen, E. A., Zellner, K. R., Colbert, D., Lee, N. A. & Lee, J. J. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J. Immunol. 187, 6059–6068 (2011).
Jacobsen, E. A. et al. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J. Exp. Med. 205, 699–710 (2008).
Kondo, Y. et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 20, 791–800 (2008).
Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).
Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).
van Rijt, L., von Richthofen, H. & van Ree, R. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma. Semin. Immunopathol. 38, 483–496 (2016).
Dhariwal, J. et al. Mucosal type 2 innate lymphoid cells are a key component of the allergic response to aeroallergen. Am. J. Respir. Crit. Care Med. 195, 1586–1596 (2017).
Smith, S. G. et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137, 75–86.e8 (2016).
Rosenberg, H. F., Dyer, K. D. & Foster, P. S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13, 9–22 (2013).
Mitchell, P. D. & O'Byrne, P. M. Epithelial-derived cytokines in asthma. Chest 151, 1338–1344 (2017).
Esnault, S. & Kelly, E. A. Essential mechanisms of differential activation of eosinophils by IL-3 compared to GM-CSF and IL-5. Crit. Rev. Immunol. 36, 429–444 (2016).
Egea, L., Hirata, Y. & Kagnoff, M. F. GM-CSF: a role in immune and inflammatory reactions in the intestine. Expert Rev. Gastroenterol. Hepatol. 4, 723–731 (2010).
Sugawara, R. et al. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J. Exp. Med. 213, 555–567 (2016).
Munitz, A. & Levi-Schaffer, F. Inhibitory receptors on eosinophils: a direct hit to a possible Achilles heel? J. Allergy Clin. Immunol. 119, 1382–1387 (2007).
Nutku, E., Aizawa, H., Hudson, S. A. & Bochner, B. S. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101, 5014–5020 (2003).
Ben Baruch-Morgenstern, N. et al. Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development. Nat. Immunol. 15, 36–44 (2014).
Tedla, N. et al. Activation of human eosinophils through leukocyte immunoglobulin-like receptor 7. Proc. Natl Acad. Sci. USA 100, 1174–1179 (2003).
Munitz, A. et al. The inhibitory receptor IRp60 (CD300a) suppresses the effects of IL-5, GM-CSF, and eotaxin on human peripheral blood eosinophils. Blood 107, 1996–2003 (2006).
Lee, J. J. & Rosenberg, H. F. (eds) Eosinophils in Health and Disease Ch. 5.6 111–119 (Elsevier, 2013).
Yu, C. et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195, 1387–1395 (2002).
Lee, J. J. et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305, 1773–1776 (2004).
Jacobsen, E. A. et al. Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 69, 315–327 (2014).
Doyle, A. D. et al. Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils. J. Leukoc. Biol. 94, 17–24 (2013).
Croxford, A. L. & Buch, T. Cytokine reporter mice in immunological research: perspectives and lessons learned. Immunology 132, 1–8 (2011).
Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R. M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).
Voehringer, D., Shinkai, K. & Locksley, R. M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).
Mohrs, K., Wakil, A. E., Killeen, N., Locksley, R. M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).
Aupperlee, M. D. et al. Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology 155, 2301–2313 (2014).
Gouon-Evans, V., Lin, E. Y. & Pollard, J. W. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 4, 155–164 (2002).
Gouon-Evans, V., Rothenberg, M. E. & Pollard, J. W. Postnatal mammary gland development requires macrophages and eosinophils. Development 127, 2269–2282 (2000).
Gouon-Evans, V. & Pollard, J. W. Eotaxin is required for eosinophil homing into the stroma of the pubertal and cycling uterus. Endocrinology 142, 4515–4521 (2001).
Sferruzzi-Perri, A. N., Robertson, S. A. & Dent, L. A. Interleukin-5 transgene expression and eosinophilia are associated with retarded mammary gland development in mice. Biol. Reprod. 69, 224–233 (2003).
Zhang, J., Lathbury, L. J. & Salamonsen, L. A. Expression of the chemokine eotaxin and its receptor, CCR3, in human endometrium. Biol. Reprod. 62, 404–411 (2000).
Knudsen, U. B., Uldbjerg, N., Rechberger, T. & Fredens, K. Eosinophils in human cervical ripening. Eur. J. Obstetr., Gynecol., Reproductive Biol. 72, 165–168 (1997).
Timmons, B. C., Fairhurst, A. M. & Mahendroo, M. S. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J. Immunol. 182, 2700–2707 (2009).
Robertson, S. A., Mau, V. J., Young, I. G. & Matthaei, K. I. Uterine eosinophils and reproductive performance in interleukin 5-deficient mice. J. Reprod. Fertil. 120, 423–432 (2000).
Matthews, A. N. et al. Eotaxin is required for the baseline level of tissue eosinophils. Proc. Natl Acad. Sci. USA 95, 6273–6278 (1998).
Hogan, S. P., Mishra, A., Brandt, E. B., Foster, P. S. & Rothenberg, M. E. A critical role for eotaxin in experimental oral antigen-induced eosinophilic gastrointestinal allergy. Proc. Natl Acad. Sci. USA 97, 6681–6686 (2000).
Mishra, A., Hogan, S. P., Lee, J. J., Foster, P. S. & Rothenberg, M. E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Invest. 103, 1719–1727 (1999).
Chu, V. T. et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40, 582–593 (2014). One of the first papers to show alterations in intestinal immune homeostasis (including alterations in IgA production, the intestinal T cell compartment and microbiota composition) in the absence of eosinophils.
Jung, Y. et al. IL-1beta in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol. 8, 930–942 (2015). This paper implicates eosinophil-derived IL-1 β in promoting intestinal homeostasis, including the maintenance of intestinal IgA levels and ROR γ -expressing ILCs.
Goh, Y. P. et al. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc. Natl Acad. Sci. USA 110, 9914–9919 (2013).
Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).
Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).
Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).
Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).
Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011). This study implicates IL-4 and/or IL-13 derived from adipose tissue eosinophils in the maintenance of alternatively activated macrophages, thereby linking eosinophils to metabolic homeostasis.
Maizels, R. M. & Allen, J. E. Immunology. Eosinophils forestall obesity. Science 332, 186–187 (2011).
Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).
Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).
Jordan, M. B., Mills, D. M., Kappler, J., Marrack, P. & Cambier, J. C. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304, 1808–1810 (2004).
Cambier, J. C., Morrison, D. C., Chien, M. M. & Lehmann, K. R. Modeling of T cell contact-dependent B cell activation. IL-4 and antigen receptor ligation primes quiescent B cells to mobilize calcium in response to Ia cross-linking. J. Immunol. 146, 2075–2082 (1991).
Lang, P. et al. TCR-induced transmembrane signaling by peptide/MHC class II via associated Ig-alpha/beta dimers. Science 291, 1537–1540 (2001).
Tabata, H., Matsuoka, T., Endo, F., Nishimura, Y. & Matsushita, S. Ligation of HLA-DR molecules on B cells induces enhanced expression of IgM heavy chain genes in association with Syk activation. J. Biol. Chem. 275, 34998–35005 (2000).
Lane, P. J., McConnell, F. M., Schieven, G. L., Clark, E. A. & Ledbetter, J. A. The role of class II molecules in human B cell activation. Association with phosphatidyl inositol turnover, protein tyrosine phosphorylation, and proliferation. J. Immunol. 144, 3684–3692 (1990).
Wang, H. B. & Weller, P. F. Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J. Leukoc. Biol. 83, 817–821 (2008).
Berek, C. Eosinophils: important players in humoral immunity. Clin. Exp. Immunol. 183, 57–64 (2016).
Wong, T. W., Doyle, A. D., Lee, J. J. & Jelinek, D. F. Eosinophils regulate peripheral B cell numbers in both mice and humans. J. Immunol. 192, 3548–3558 (2014).
Chu, V. T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12, 151–159 (2011).
Mantis, N. J., Rol, N. & Corthesy, B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4, 603–611 (2011).
Tulic, M. K. et al. Thymic indoleamine 2,3-dioxygenase-positive eosinophils in young children: potential role in maturation of the naive immune system. Am. J. Pathol. 175, 2043–2052 (2009).
Odemuyiwa, S. O. et al. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J. Immunol. 173, 5909–5913 (2004).
Kim, H. J., Alonzo, E. S., Dorothee, G., Pollard, J. W. & Sant'Angelo, D. B. Selective depletion of eosinophils or neutrophils in mice impacts the efficiency of apoptotic cell clearance in the thymus. PLoS ONE 5, e11439 (2010).
Dajotoy, T. et al. Human eosinophils produce the T cell-attracting chemokines MIG and IP-10 upon stimulation with IFN-gamma. J. Leukoc. Biol. 76, 685–691 (2004).
Yang, D. et al. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102, 3396–3403 (2003).
Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat. Rev. Immunol. 14, 719–730 (2014).
Farhan, R. K. et al. Effective antigen presentation to helper T cells by human eosinophils. Immunology 149, 413–422 (2016).
Carretero, R. et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 16, 609–617 (2015).
Noor, Z. et al. Role of eosinophils and tumor necrosis factor alpha in interleukin-25-mediated protection from amebic colitis. MBio 8, e02329–e02316 (2017).
Guerra, E. S. et al. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog. 13, e1006175 (2017).
Ikutani, M. et al. Prolonged activation of IL-5-producing ILC2 causes pulmonary arterial hypertrophy. JCI Insight 2, e90721 (2017).
Withers, S. B. et al. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci. Rep. 7, 44571 (2017).
Luna-Gomes, T., Bozza, P. T. & Bandeira-Melo, C. Eosinophil recruitment and activation: the role of lipid mediators. Front. Pharmacol. 4, 27 (2013).
Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).
Dyer, K. D., Garcia-Crespo, K. E., Percopo, C. M., Sturm, E. M. & Rosenberg, H. F. Protocols for identifying, enumerating, and assessing mouse eosinophils. Methods Mol. Biol. 1032, 59–77 (2013).
Behzad, A. R. et al. Localization of DNA and RNA in eosinophil secretory granules. Int. Arch. Allergy Immunol. 152, 12–27 (2010).
Wickramasinghe, S. N. & Hughes, M. High resolution autoradiographic studies of RNA, protein and DNA synthesis during human eosinophil granulocytopoiesis: evidence for the presence of RNA on or within eosinophil granules. Br. J. Haematol. 38, 179–183 (1978).
Bandeira-Melo, C., Woods, L. J., Phoofolo, M. & Weller, P. F. Intracrine cysteinyl leukotriene receptor-mediated signaling of eosinophil vesicular transport-mediated interleukin-4 secretion. J. Exp. Med. 196, 841–850 (2002).
Carulli, G. et al. Detection of eosinophils in whole blood samples by flow cytometry. Cytometry 34, 272–279 (1998).
Ethier, C., Lacy, P. & Davoine, F. Identification of human eosinophils in whole blood by flow cytometry. Methods Mol. Biol. 1178, 81–92 (2014).
Barnig, C. et al. Circulating human eosinophils share a similar transcriptional profile in asthma and other hypereosinophilic disorders. PLoS ONE 10, e0141740 (2015).
Zhang, J. Q., Biedermann, B., Nitschke, L. & Crocker, P. R. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur. J. Immunol. 34, 1175–1184 (2004).
de Bruin, A. M. et al. Eosinophil differentiation in the bone marrow is inhibited by T cell-derived IFN-gamma. Blood 116, 2559–2569 (2010).
Dyer, K. D. et al. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J. Immunol. 181, 4004–4009 (2008).
Satoh, T. et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 495, 524–528 (2013).
Carlens, J. et al. Common gamma-chain-dependent signals confer selective survival of eosinophils in the murine small intestine. J. Immunol. 183, 5600–5607 (2009).
Smith, K. M., Rahman, R. S. & Spencer, L. A. Humoral immunity provides resident intestinal eosinophils access to luminal antigen via eosinophil-expressed low-affinity Fcgamma receptors. J. Immunol. 197, 3716–3724 (2016).
Cheng, L. E. et al. IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. J. Exp. Med. 212, 513–524 (2015).
Esnault, S. et al. Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines. Clin. Immunol. 150, 90–100 (2014).
Stevens, W. W., Kim, T. S., Pujanauski, L. M., Hao, X. & Braciale, T. J. Detection and quantitation of eosinophils in the murine respiratory tract by flow cytometry. J. Immunol. Methods 327, 63–74 (2007).