Functions of melatonin in plants: a review

Journal of Pineal Research - Tập 59 Số 2 - Trang 133-150 - 2015
Marino B. Arnao1, Josefa Hernández‐Ruíz1
1Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain

Tóm tắt

Abstract

The number of studies on melatonin in plants has increased significantly in recent years. This molecule, with a large set of functions in animals, has also shown great potential in plant physiology. This review outlines the main functions of melatonin in the physiology of higher plants. Its role as antistress agent against abiotic stressors, such as drought, salinity, low and high ambient temperatures, UV radiation and toxic chemicals, is analyzed. The latest data on their role in plant–pathogen interactions are also discussed. Both abiotic and biotic stresses produce a significant increase in endogenous melatonin levels, indicating its possible role as effector in these situations. The existence of endogenous circadian rhythms in melatonin levels has been demonstrated in some species, and the data, although limited, suggest a central role of this molecule in the day/night cycles in plants. Finally, another aspect that has led to a large volume of research is the involvement of melatonin in aspects of plant development regulation. Although its role as a plant hormone is still far of from being fully established, its involvement in processes such as growth, rhizogenesis, and photosynthesis seems evident. The multiple changes in gene expression caused by melatonin point to its role as a multiregulatory molecule capable of coordinating many aspects of plant development. This last aspect, together with its role as an alleviating‐stressor agent, suggests that melatonin is an excellent prospect for crop improvement.

Từ khóa


Tài liệu tham khảo

10.1021/ja01543a060

10.1016/S0079-6123(08)81008-4

Reiter RJ, 2014, Melatonin: exceeding expectations, Physiology (Bethesda), 56, 371

10.1111/j.1600-079X.2008.00628.x

10.1111/j.1600-079X.2011.00934.x

10.3390/ijms14048638

Reiter RJ, 2013, The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives, Mini‐Rev Med Chem, 13, 373

10.1111/j.1600-079X.2012.01014.x

10.1111/jpi.12128

10.1111/jpi.12018

10.1046/j.1600-079X.2003.00092.x

10.1111/jpi.12090

10.1111/j.1600-079X.1995.tb00136.x

Hattori A, 1995, Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates, Biochem Mol Biol Int, 35, 627

10.1093/carcin/bgh090

10.1007/s00204-013-1111-8

10.1111/jpi.12152

Reiter RJ, 2007, Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions, World Rev Nutr Diet, 97, 211

10.1016/j.tifs.2014.02.001

10.1155/2014/815769

Arnao MB, 2015, Studies in Natural Products Chemistry (Bioactive Natural Products), 519

10.1016/j.phytol.2008.06.001

10.4161/psb.2.6.4639

Arnao MB, 2015, Amino Acids in Higher Plants, 390, 10.1079/9781780642635.0390

10.1016/j.jenvman.2014.06.001

Kolar J, 1995, Melatonin in higher plant determined by radioimmunoassay and liquid chromatography‐mass spectrometry, Biol Rhythm Res, 26, 406

10.1016/S0031-9422(96)00568-7

10.1034/j.1399-3054.2003.00114.x

10.1111/j.1600-079X.2005.00276.x

10.1016/S0140-6736(05)64014-7

10.1007/s002990000206

Murch SJ, 2002, Mammalian neurohormones: potential significance in reproductive physiology of St. John's wort (Hypericum perforatum L.)?, Naturwissenschaften, 89, 555, 10.1007/s00114-002-0376-1

10.1007/s11627-001-0130-y

10.1016/S0024-3205(00)00896-1

10.1111/j.1753-4887.2001.tb07018.x

10.1096/fj.06-7745com

10.1093/jxb/ern284

10.1093/jxb/err256

10.3390/molecules20047396

10.1007/s00425-004-1317-3

10.1111/j.1600-079X.2005.00226.x

10.4161/psb.1.3.2640

Hardeland R, 2012, Melatonin in aging and disease. Multiple consequences of reduced secretion, options and limits of treatment, Aging Dis, 3, 194

10.3390/ijms14022410

10.1177/1534735411425484

10.1159/000014636

10.1111/j.1600-079X.2011.00895.x

10.1046/j.1600-079X.2003.00106.x

10.1111/j.1600-079X.2007.00552.x

10.1111/j.1600-079X.2008.00652.x

10.1111/j.1600-079X.2010.00817.x

10.1111/j.1600-079X.2012.01015.x

10.1111/j.1600-079X.2012.00999.x

10.1007/s10535-012-0253-5

10.1111/jpi.12094

10.1111/jpi.12115

10.1111/jpi.12155

10.1093/jxb/eru392

10.1093/jxb/eru373

10.1016/j.plaphy.2014.11.021

10.1111/ppl.12218

10.1111/jpi.12167

10.1007/s00232-014-9746-9

Zhao N, 2012, Effects of exogenous melatonin on nitrogen metabolism in cucumber seedlings under high temperature stress, Ying Yong Sheng Tai Xue Bao, 48, 557

10.1111/jpi.12159

10.1016/j.scienta.2014.10.049

10.1111/j.1600-079X.2008.00625.x

10.1111/j.1600-079X.2011.00966.x

10.1111/jpi.12017

10.1111/jpi.12091

10.1371/journal.pone.0093462

10.1111/j.1600-079X.2012.00976.x

10.1111/jpi.12077

10.1016/j.plaphy.2012.10.001

10.1111/jpi.12188

10.1093/jxb/erq378

10.4161/psb.23279

10.1007/s10725-014-9905-0

10.1093/jxb/eru476

10.1111/jpi.12169

10.1111/j.1600-079X.2006.00337.x

10.1111/j.1600-079X.2008.00660.x

10.1111/jpi.12055

10.1016/j.foodchem.2012.10.077

10.1111/j.1600-079X.2011.00884.x

10.1111/jpi.12044

10.1111/j.1600-079X.2012.01029.x

10.1111/jpi.12232

10.1111/j.1600-079X.2011.00947.x

10.1111/jpi.12111

10.1111/jpi.12219

10.1111/j.1600-079X.2009.00673.x

10.1111/jpi.12180

10.1111/j.1600-079X.2010.00783.x

10.1007/s11627-011-9413-0

10.1111/j.1600-079X.2012.01008.x

10.1111/jpi.12105

10.1111/jpi.12129

10.1111/jpi.12088

10.1111/j.1600-079X.2011.00930.x

10.1111/jpi.12120

10.1111/j.1600-079X.2010.00788.x

10.1111/j.1600-079X.2007.00516.x

10.5455/spatula.20130422052142

10.1203/00006450-200112000-00021

10.1111/jpi.12038

10.1111/jpi.12165

10.1111/jpi.12214

10.1093/pcp/pcu171

10.1074/jbc.M109.091371

10.1007/BF01923947

10.1126/science.290.5492.799

10.1038/nature00965

10.1126/science.1115581

10.1111/nph.12853

10.1016/j.pbi.2014.06.008

10.1111/nph.12489

10.1078/0176-1617-00561

10.1034/j.1600-079X.2001.310102.x

Arnao MB, 2014, UV Radiation: Properties, Effects, and Applications, 79

10.1079/IVP2002333

10.1021/jf8022063

10.1007/s10725-008-9254-y

10.1016/j.jplph.2008.06.002

10.1016/j.tplants.2014.07.006

10.1111/j.1600-079X.2006.00396.x

10.1111/j.1600-079X.2011.00914.x

10.1111/j.1600-079X.2012.00996.x

10.1111/jeu.12080

10.3906/bot-1302-55

10.1111/ppl.12171

10.1007/s00299-007-0357-0

Litwinczuk W, 2009, Development of highbush blueberry (Vaccinium corymbosum hort. non L.) in vitro shoot cultures under the influence of melatonin, Acta Sci Pol Hort Cult, 8, 3

10.1007/s00299-014-1707-3

10.1111/jpi.12095

10.3389/fpls.2012.00225

10.1093/jxb/eru332

10.1007/978-1-4020-6014-4_21

10.1093/pcp/pce133

10.1093/jxb/erv089

10.1016/j.phytochem.2014.08.027

10.1016/j.jplph.2014.11.008

10.1093/jxb/erv011

10.1111/j.1600-079X.2012.01019.x

10.1111/jpi.12011

10.1111/jpi.12053

10.1111/jpi.12103

10.1111/jpi.12231

10.1111/jpi.12181

10.1111/jpi.12160

10.1016/j.tem.2007.10.007

10.1111/j.1600-079X.2006.00407.x

10.1016/j.neulet.2013.02.073

10.1124/dmd.104.002410

10.1111/jpi.12220

10.1111/j.1600-079X.2011.00949.x

10.1111/j.1600-079X.2012.00979.x

10.1111/jpi.12183

10.4137/IJTR.S22450

10.1111/jpi.12223

10.1111/jpi.12026

10.3390/ijms140611208

10.1126/science.1219075

10.1111/jpi.12189

10.1016/j.tplants.2015.01.001