Functions of bounded variation on “good” metric spaces
Tài liệu tham khảo
Ambrosio, 2001, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math., 159, 51, 10.1006/aima.2000.1963
Ambrosio, 1992, On the relaxation in BV(Ω,Rm) of quasi-convex integrals, J. Funct. Anal., 109, 76, 10.1016/0022-1236(92)90012-8
Ambrosio, 1991, Functionals with linear growth defined on vector valued BV functions, J. Math. Pures Appl., 70, 269
Anzellotti, 1978, Funzioni BV e tracce, Rend. Sem. Mat. Univ. Padova, 60, 1
Baldi, 2001, Weighted BV functions, Houston J. Math., 27, 683
Bellettini, 1999, BV functions with respect to a measure and relaxation metric integral functionals, J. Conv. Anal., 6, 349
Caccioppoli, 1952, Misura e integrazione sugli insiemi dimensionalmente orientati, Accad. Naz. Lincei, 12, 3
Cheeger, 1999, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428, 10.1007/s000390050094
David, 1997, Fractured fractals and broken dreams. Self-similar geometry through metric and measure, 7
De Giorgi, 1954, Su una teoria générale della misura (r−1)-dimensionale in uno spazio a r dimensioni, Ann. Mat. Pura Appl., 36, 191, 10.1007/BF02412838
De Giorgi, 1977, Une notion générale de convergence faible pour des fonctions croissantes d'ensemble, Ann. Scuola Norm. Sup. Pisa, 61
Evans, 1992
Federer, 1969
Franchi, 1991, Weighted Sobolev–Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc., 327, 125
Franchi, 1996, Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 859
Franchi, 1997, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital., 83
Garofalo, 1996, Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 1081, 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
Giusti, 1985
Gromov, 1996, Carnot–Carathéodory spaces seen from within, 144
Gromov, 1999
Hajłasz, 1996, Sobolev spaces on an arbitrary metric space, Potential Anal., 5, 403
Hajłasz, 1995, Sobolev meets Poincaré, C. R. Acad. Sci. Paris, 1211
P. Hajłasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., to appear
Hanson, 2000, An n-dimensional space that admits a Poincaré inequality but has no manifold points, Proc. Amer. Math. Soc., 128, 10.1090/S0002-9939-00-05453-8
Heinonen, 1997
Heinonen, 2001, Sobolev classes of Banach spaces-valued functions and quasiconformal mappings, J. Anal. Math., 85, 87, 10.1007/BF02788076
Jerison, 1986, The Poincaré inequality for vector fields satisfying Hörmander condition, Duke Math. J., 503, 10.1215/S0012-7094-86-05329-9
T.J. Laakso, Ahlfors q-regular spaces with arbitrary q>1 admitting weak Poincaré inequality
Mattila, 1995, 44
Maz'ya, 1985
Muckenhoupt, 1972, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165, 207, 10.1090/S0002-9947-1972-0293384-6
Nagel, 1985, Balls and metrics defined by vector fields I: basic properties, Trans. Amer. Math. Soc., 323, 103
Semmes, 1999
Ziemer, 1989