Functions of bounded variation on “good” metric spaces

Journal de Mathématiques Pures et Appliquées - Tập 82 - Trang 975-1004 - 2003
Michele Miranda1
1Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy

Tài liệu tham khảo

Ambrosio, 2001, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math., 159, 51, 10.1006/aima.2000.1963 Ambrosio, 1992, On the relaxation in BV(Ω,Rm) of quasi-convex integrals, J. Funct. Anal., 109, 76, 10.1016/0022-1236(92)90012-8 Ambrosio, 1991, Functionals with linear growth defined on vector valued BV functions, J. Math. Pures Appl., 70, 269 Anzellotti, 1978, Funzioni BV e tracce, Rend. Sem. Mat. Univ. Padova, 60, 1 Baldi, 2001, Weighted BV functions, Houston J. Math., 27, 683 Bellettini, 1999, BV functions with respect to a measure and relaxation metric integral functionals, J. Conv. Anal., 6, 349 Caccioppoli, 1952, Misura e integrazione sugli insiemi dimensionalmente orientati, Accad. Naz. Lincei, 12, 3 Cheeger, 1999, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428, 10.1007/s000390050094 David, 1997, Fractured fractals and broken dreams. Self-similar geometry through metric and measure, 7 De Giorgi, 1954, Su una teoria générale della misura (r−1)-dimensionale in uno spazio a r dimensioni, Ann. Mat. Pura Appl., 36, 191, 10.1007/BF02412838 De Giorgi, 1977, Une notion générale de convergence faible pour des fonctions croissantes d'ensemble, Ann. Scuola Norm. Sup. Pisa, 61 Evans, 1992 Federer, 1969 Franchi, 1991, Weighted Sobolev–Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc., 327, 125 Franchi, 1996, Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., 859 Franchi, 1997, Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital., 83 Garofalo, 1996, Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 1081, 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A Giusti, 1985 Gromov, 1996, Carnot–Carathéodory spaces seen from within, 144 Gromov, 1999 Hajłasz, 1996, Sobolev spaces on an arbitrary metric space, Potential Anal., 5, 403 Hajłasz, 1995, Sobolev meets Poincaré, C. R. Acad. Sci. Paris, 1211 P. Hajłasz, P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc., to appear Hanson, 2000, An n-dimensional space that admits a Poincaré inequality but has no manifold points, Proc. Amer. Math. Soc., 128, 10.1090/S0002-9939-00-05453-8 Heinonen, 1997 Heinonen, 2001, Sobolev classes of Banach spaces-valued functions and quasiconformal mappings, J. Anal. Math., 85, 87, 10.1007/BF02788076 Jerison, 1986, The Poincaré inequality for vector fields satisfying Hörmander condition, Duke Math. J., 503, 10.1215/S0012-7094-86-05329-9 T.J. Laakso, Ahlfors q-regular spaces with arbitrary q>1 admitting weak Poincaré inequality Mattila, 1995, 44 Maz'ya, 1985 Muckenhoupt, 1972, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165, 207, 10.1090/S0002-9947-1972-0293384-6 Nagel, 1985, Balls and metrics defined by vector fields I: basic properties, Trans. Amer. Math. Soc., 323, 103 Semmes, 1999 Ziemer, 1989