Chức Năng Hóa Vỏ Gạo Bằng Axit Ortho-Photphoric Tăng Cường Khả Năng Hấp Phụ Để Loại Bỏ Dyes Anion

Chemistry Africa - Tập 3 - Trang 457-467 - 2020
Luqmon Azeez1, Ayoade L. Adejumo2, Samuel S. Asaolu3, Moriam D. Adeoye4, Rasheed O. Adetoro1
1Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
2Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
3Department of Chemistry, Ekiti State University, Ado-Ekiti, Nigeria
4Department of Chemical Sciences, Fountain University, Osogbo, Nigeria

Tóm tắt

Vỏ gạo là một polymer có khả năng phân hủy sinh học và khá phong phú. Tuy nhiên, khả năng hấp phụ thấp của nó đã hạn chế việc sử dụng nó như một chất hấp phụ. Nghiên cứu này đã mô tả quá trình hấp phụ màu methyl orange (MO) trên vỏ gạo (RH) và hợp chất dẫn xuất chức năng hóa H3PO4 (FRH). Hai chất hấp phụ này đã được đặc trưng bằng quang phổ hồng ngoại biến đổi Fourier (FTIR), kính hiển vi điện tử quét (SEM) và phân tích năng lượng tán xạ tia X (EDX). Dữ liệu quang phổ cho thấy sự dịch chuyển và giảm cường độ của các nhóm chức năng ngoài việc xuất hiện một đỉnh ở 963 cm−1 trong FRH. Ảnh SEM và EDX cho thấy sự thay đổi trong hình thái bề mặt với các khoang thô và tăng tỷ lệ carbon có thể ảnh hưởng đến các thuộc tính hấp phụ. Các ảnh hưởng của pH, thời gian tiếp xúc, nồng độ MO, liều lượng chất hấp phụ và nhiệt độ đối với quá trình hấp phụ đã được nghiên cứu. Lượng hấp phụ của MO tối đa ở pH 2.0 đối với RH, pH 5.0 đối với FRH, và được phát hiện là tăng lên cùng với sự gia tăng thời gian tiếp xúc, liều lượng và nồng độ. Mô hình Langmuir là phù hợp nhất để mô tả quá trình hấp phụ cho RH trong khi mô hình Freundlich là phù hợp nhất cho FRH. Khả năng hấp phụ một lớp tối đa đã cải thiện từ 28.7 (RH) lên 177.4 mgg−1 (FRH). Năng lượng hấp phụ (4.5 và 3.6 kJmol−1) cho thấy việc loại bỏ MO là một quá trình hấp phụ vật lý. Động học giả thứ hai tốt nhất đã mô tả quá trình hấp phụ. Cả hai quá trình hấp phụ đều tự phát, trong khi quá trình này tỏa nhiệt đối với RH, thì nó lại thu nhiệt đối với FRH. Việc chức năng hóa bằng H3PO4 đã tăng cường khả năng hấp phụ của vỏ gạo lên 519%.

Từ khóa

#võ gạo #hấp phụ #methyl orange #chức năng hóa #H3PO4 #mô hình Langmuir #mô hình Freundlich

Tài liệu tham khảo

Azeez L, Lateef A, Adebisi SA, Oyedeji AO (2018) Novel biosynthesized silver nanoparticles from cobwebas adsorbent for Rhodamine B: equilibrium isotherm, kinetic and thermodynamic studies. Appl Water Sci 8:32. https://doi.org/10.1007/s13201-018-0676-z Zhao D, Zhang W, Chena C, Wang X (2013) Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environ Sci 18:890–895 Allouche F-N, Yassaa N, Lounici H (2015) Sorption of methyl orange from aqueous solution of chitosan biomass. Procedia Earth Planetary Sci 15:596–601 Youssef NA, Shaban SA, Ibrahim FA, Mahmoud AS (2016) Degradation of methyl orange using Fenton catalytic reaction. Egypt J Petroleum 25:317–321 Huang R, Liu Q, Huo J, Yang B (2017) Adsorption of methyl orange onto protonated crosslinked chitosan. Arab J Chem 10:24–32 Keyhanian F, Shariati S, Faraji M, Hesabi M (2016) Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arab J Chem 9:S348–S354 Rattanapan S, Srikram J, Kongsune P (2017) Adsorption of methyl orange on coffee grounds activated carbon. Energy Proc 138:949–954 Ojedokun AT, Bello OS (2017) Liquid phase adsorption of Congo red dye on functionalized corn cobs. J Dispersion Sci Technol 38(9):1285–1294 Ojo TA, Ojedokun AT, Bello OS (2019) Functionalization of powdered walnut shell with orthophosphoric acid for congo red dye removal. Particlate Sci Technol 37(1):74–85 Shah J, Jan MR, Haq A, Khan Y (2012) Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies. Front Chem Sci Eng 7(4):428–436 Bazrafshan E, Zarei AA, Nadi H, Zazouli MA (2014) Adsorptive removal of methyl orange and reactive red 198 dyes by Moringa peregrina ash. Indian J Chem Technol 21:105–113 Li WC, Law FY, Chan YHM (2017) Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk. Environ Sci Pollut Res 24(10):8903–8915 El Haddad M, Mamouni R, Saffaj N, Lazar S (2016) Evaluation of Performance of animal bone meal as a new low cost adsorbent for the removal of a cationic dye Rhodamine B from aqueous solutions. J Saudi Chem Soc 20:S53–S59 Shen K, Gondal MA (2017) Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J Saudi Chem Soc 21:S120–S127 Aishah AJ, Sugeng TS, Hazirah A, Rahim ND, Arif M, Aziz A (2010) Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J Hazard Mater 181:755–762 Tang J, Yang ZF, Yi YJ (2012) Enhanced adsorption of methyl orange by vermiculite modified by cetyltrimethylammonium bromide (CTMAB). Procedia Environ Sci 13:2179–2187 Haitham K, Razak S, Nawi MA (2019) Kinetics and isotherm studies of methyl orange adsorption by a highly recyclable immobilized polyaniline on a glass plate. Arab J Chem 12(7):1595–1606 Istratie R, Stoia M, Pacurariu C, Locovei C (2019) Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arabian J Chem 12(8):3704–3722 Raliya R, Avery C, Chakrabarti S, Biswas P (2017) Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Appl Nanosci 7:253–259 Syuhadah SN, Rohasliney H (2012) Rice husk as biosorbent: a review. Heal Environ J 3:89–95 Lattuada RM, Peralba MCR, Dos Santos JHZ, Fisch AG (2014) Rice husk and rice husk carbon as low- cost adsorbents for metals from acidic aqueous solutions. Sep Sci Tech 49:101–111 Zhang Y, Zhao J, Jiang Z, Shan D, Lu Y (2014) Biosorption of Fe (II) and Mn (II) ions from aqueous solution by rice husk ash. Biomed Res Int. https://doi.org/10.1155/2014/973095 Anjum H, Murugesan T (2016) Effect of functionalization condition on characterization of carbonaceous adsorbent. Proc Eng 148:1346–1350 Masih M, Anthony P, Siddiqui SH (2018) Removal of Cu (II) ion from aqueous solutions by rice husk carbon-chitosan composite gel (CCRH) using response surface methodology. Environ Nanotechnol Monitor Manage 10:189–198 Inyinbor AA, Adekola FA, Olatunji GA (2016) Kinetics and isothermal modelling of liquid phase adsorption of Rhodamine B onto urea modified Raphia hookerie epicarp. Appl Water Sci 7(6):3257–3266 Chen RP, Zhang YL, Shen LF, Wang XY, Chen JQ, Ma AJ, Jiang WM (2015) Lead (II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem Eng J 268:348–355 Chowdhury S, Saha PD (2012) Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers. Appl Water Sci 2:209–219 Abdel-Halim ES (2013) Preparation of starch/poly (N, N-Diethylaminoethyl methacrylate) hydrogel and its use in dye removal from aqueous solutions. React Funct Polym 73:1531–1536 Amuda OS, Olayiwola AO, Alade AO, Farombi AG, Adebisi SA (2014) Adsorption of methylene blue from aqueous solution using steam-activated carbon produced from Lantana camara stem. J Environ Protect 5:1352–1363 Olajire AA, Abidemi JJ, Lateef A, Benson NU (2017) Adsorptive desulphurization of model oil by Ag nanoparticles-modified activated carbon prepared from brewer’s spent grains. J Environ Chem Eng 5:147–159 Girish CR, Murty VR (2014) Adsorption of phenol from aqueous solution using Lantana camara, forest waste: kinetics, isotherm, and thermodynamic studies. Int Sch Res Notices. https://doi.org/10.1155/2014/201626 Zhou Y, Zhang F, Tang L, Zhang J, Zeng G, Luo L, Liu Y, Wang P, Peng B, Liu X (2017) Simultaneous removal of atrazine and copper using polyacrylic acid functionalized magnetic ordered mesoporous carbon from water: adsorption mechanism. Sci Reports 7:43831. https://doi.org/10.1038/srep43831 Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. ACS 40:1361–1403 Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470 Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327–356 Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337 Zhu HY, Jiang R, Fu YQ, Jiang JH, Xiao L (2011) Preparation, characterization and dye adsorption properties of γFe2O3/SiO2/chitosan composite. Appl Surf Sci 258:1337–1344 Willie C, Hosseini S, Moonis AK, Chuah TG, Thomas SYC (2013) Acid modified carbon coated monolith for methyl orange adsorption. Chem Eng J 215–216:747–754 Kou T, Wang Y, Zhang C, Sun J, Zhang Z (2013) Adsorption behaviour of methyl orange onto nanoporous core-shell Cu@Cu2O nanocomposite. Chem Eng J 223:76–83 Xu J, Chena L, Qu H, Jiao Y, Xie J, Xing G (2014) Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl Surf Sci 320:674–680 Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131 Duan X, Srinivasakannan C, Wang X, Wang F, Liu X (2017) Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. J Taiwan Inst Chem Eng 70:374–381 Kumar A, Jena HM (2016) Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Res Phy 6:651–658 Shamsuddin MS, Yusoff NRN, Sulaiman MA (2016) Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chem 19:558–565 Yakout SM, Sharaf El-Deen G (2016) Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab J Chem 9:S1155–S1162 Adekola FA, Ayodele SB, Inyinbor AA (2019) Efficient rhodamine B removal using acid- and alkaline-activated Musa paradisiaca Biochar. Pol J Environ Stud 28(5):3063–3070 Macías-García A, Carrasco-Amador JP, Encinas-Sánchez V, Díaz-Díeza MA, Torrejón-Martín D (2019) Preparation of activated carbon from kenaf by activation with H3PO4. Kinetic study of the adsorption/electroadsorption using a system of supports designed in 3D, for environmental applications. J Environ Chem Eng. 7:103196 Oyelude EO, Awudza JAM, Twumasi SK (2018) Removal of malachite green from aqueous solution using pulverized teak leaf litter: equilibrium, kinetic and thermodynamic studies. Chem Central J 12:81. https://doi.org/10.1186/s13065-018-0448-8 Azeez L, Lateef A, Adejumo AL, Adeleke JT, Adetoro RO, Mustapha Z (2020) Adsorption behaviour of rhodamine B on hen feather and corn starch functionalized with green synthesized silver nanoparticles (AgNPs) mediated with cocoa pods extracts. Chem Afr 3:237–250 Dada AO, Ojediran JO, Olalekan AP (2013) Sorption of Pb2+ from aqueous solution unto modified rice husk: isotherms studies. Adv Phys Chem. https://doi.org/10.1155/2013/842425 Paethanom A, Yoshikawa K (2012) Influence of pyrolysis temperature on rice husk char characteristics and its tar adsorption capability. Energies 5:4941–4951 Dada AO, Olalekan AP, Olatunya AM, DADA O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J Appl Chem. 3(1): 38-45