Functional wood for carbon dioxide capture
Tài liệu tham khảo
Roy, 2018, Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges, ACS Energy Lett., 3, 1938, 10.1021/acsenergylett.8b00740
Smith, 2018, Impact of anthropogenic CO2 emissions on global human nutrition, Nat. Clim. Chang., 8, 834, 10.1038/s41558-018-0253-3
Markewitz, 2012, Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci., 5, 7281, 10.1039/c2ee03403d
2014, 151
Li, 2019, A radiative cooling structural material, Science, 364, 760, 10.1126/science.aau9101
Jiang, 2018, Wood-based nanotechnologies toward sustainability, Adv. Mater., 30, 1703453, 10.1002/adma.201703453
Song, 2018, Processing bulk natural wood into a high-performance structural material, Nature, 554, 224, 10.1038/nature25476
Keplinger, 2019, Nanofibrillated cellulose composites and wood derived scaffolds for functional materials, J. Mater. Chem., 7, 2981, 10.1039/C8TA10711D
Castro-Pardo, 2022, A comprehensive overview of carbon dioxide capture: from materials, methods to industrial status, Mater. Today, 60, 227, 10.1016/j.mattod.2022.08.018
Bhattacharyya, 2022, An overview of catalytic CO2 conversion, 411
Sanz-Pérez, 2016, Direct capture of CO2 from ambient air, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173
Samanta, 2012, Post-combustion CO2 capture using solid sorbents: a review, Ind. Eng. Chem. Res., 51, 1438, 10.1021/ie200686q
Singh, 2020, Emerging trends in porous materials for CO2 capture and conversion, Chem. Soc. Rev., 49, 4360, 10.1039/D0CS00075B
Prasankumar, 2022, Biomass derived hierarchical porous carbon for supercapacitor application and dilute stream CO2 capture, Carbon, 199, 249, 10.1016/j.carbon.2022.07.057
Ding, 2019, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chem. Soc. Rev., 48, 2783, 10.1039/C8CS00829A
Trickett, 2017, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater., 2, 17045, 10.1038/natrevmats.2017.45
Hu, 2019, CO2 capture in metal–organic framework adsorbents: an engineering perspective, Adv. Sustain. Syst., 3, 1800080, 10.1002/adsu.201800080
Lin, 2017, Metal-organic frameworks for carbon dioxide capture and methane storage, Adv. Energy Mater., 7, 1601296, 10.1002/aenm.201601296
Yu, 2017, CO2 capture and separations using MOFs: computational and experimental studies, Chem. Rev., 117, 9674, 10.1021/acs.chemrev.6b00626
Belmabkhout, 2016, Low concentration CO2 capture using physical adsorbents: are metal–organic frameworks becoming the new benchmark materials?, Chem. Eng. J., 296, 386, 10.1016/j.cej.2016.03.124
Zhu, 2014, Metal–organic framework composites, Chem. Soc. Rev., 43, 5468, 10.1039/C3CS60472A
Piscopo, 2020, Strategies to enhance carbon dioxide capture in metal-organic frameworks, ChemplusChem, 85, 538, 10.1002/cplu.202000072
Lin, 2021, A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture, Science, 374, 1464, 10.1126/science.abi7281
Zhang, 2021, Advances in cellulose-metal organic framework composites: preparation and applications, J. Mater. Chem., 9, 23353, 10.1039/D1TA06468A
Pachfule, 2012, One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption, Chem. Commun., 48, 2009, 10.1039/c2cc16877d
Ge, 2013, Hierarchically structured metal–organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture, RSC Adv., 3, 25360, 10.1039/c3ra44250k
Anbia, 2012, Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide, Chem. Eng. J., 191, 326, 10.1016/j.cej.2012.03.025
Qian, 2012, Synthesis of hierarchical porous carbon monoliths with incorporated metal–organic frameworks for enhancing volumetric based CO2 capture capability, ACS Appl. Mater. Interfaces, 4, 6125, 10.1021/am301772k
Xiang, 2011, Metal–organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping, Angew. Chem. Int. Ed. Engl., 50, 491, 10.1002/anie.201004537
Xu, 2019, Sustainable porous carbon materials derived from wood-based biopolymers for CO2 capture, Nanomaterials, 9, 103, 10.3390/nano9010103
Zhu, 2016, Wood-derived materials for green electronics, biological devices, and energy applications, Chem. Rev., 116, 9305, 10.1021/acs.chemrev.6b00225
Liu, 2018, Helical fibers via evaporation-driven self-assembly of surface-acylated cellulose nanowhiskers, Angew. Chem. Int. Ed. Engl., 130, 16561, 10.1002/ange.201808250
Li, 2016, Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation, Green Chem., 18, 1010, 10.1039/C5GC02576A
Pereira Oliveira Moreira, 2020, Exploring the hierarchical structure and alignment of wood cellulose fibers for bioinspired anisotropic polymeric composites, ACS Appl. Bio Mater., 3, 2193, 10.1021/acsabm.0c00038
Berglund, 2018, Bioinspired wood nanotechnology for functional materials, Adv. Mater., 30, 1704285, 10.1002/adma.201704285
Li, 2019, Optically transparent wood substrate for perovskite solar cells, ACS Sustain. Chem. Eng., 7, 6061, 10.1021/acssuschemeng.8b06248
Kretschmann, 2003, Velcro mechanics in wood, Nat. Mater., 2, 775, 10.1038/nmat1025
Wimmers, 2017, Wood: a construction material for tall buildings, Nat. Rev. Mater., 2, 17051, 10.1038/natrevmats.2017.51
Li, 2016, Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance, Biomacromolecules, 17, 1358, 10.1021/acs.biomac.6b00145
Jia, 2017, Rich mesostructures derived from natural woods for solar steam generation, Joule, 1, 588, 10.1016/j.joule.2017.09.011
Zhu, 2016, Transparent and haze wood composites for highly efficient broadband light management in solar cells, Nano Energy, 26, 332, 10.1016/j.nanoen.2016.05.020
Fu, 2018, Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures, ACS Nano, 12, 2222, 10.1021/acsnano.8b00005
Chen, 2017, Highly flexible and efficient solar steam generation device, Adv. Mater., 29, 1701756, 10.1002/adma.201701756
Shen, 2016, Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries, Adv. Energy Mater., 6, 1600377, 10.1002/aenm.201600377
Wang, 2012, Layered nanocomposites inspired by the structure and mechanical properties of nacre, Chem. Soc. Rev., 41, 1111, 10.1039/C1CS15106A
Militzer, 2002, A synchrotron look at steel, Science, 298, 975, 10.1126/science.1078210
Zhu, 2015, Anomalous scaling law of strength and toughness of cellulose nanopaper, Proc. Natl. Acad. Sci. USA, 112, 8971, 10.1073/pnas.1502870112
Meyers, 2013, Structural biological materials: critical mechanics-materials connections, Science, 339, 773, 10.1126/science.1220854
Gao, 2003, Materials become insensitive to flaws at nanoscale: lessons from nature, Proc. Natl. Acad. Sci. USA, 100, 5597, 10.1073/pnas.0631609100
Zhu, 2004, Retaining ductility, Nat. Mater., 3, 351, 10.1038/nmat1141
Podsiadlo, 2007, Ultrastrong and stiff layered polymer nanocomposites, Science, 318, 80, 10.1126/science.1143176
Wu, 2019, Delignified wood with unprecedented anti-oil properties for the highly efficient separation of crude oil/water mixtures, J. Mater. Chem., 7, 16735, 10.1039/C9TA04913D
Gan, 2019, Single-digit-micrometer thickness wood speaker, Nat. Commun., 10, 5084, 10.1038/s41467-019-13053-0
Huang, 2018, Wood derived composites for high sensitivity and wide linear-range pressure sensing, Small, 14, 1801520, 10.1002/smll.201801520
Báder, 2020, FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression, Cellulose, 27, 6811, 10.1007/s10570-020-03131-8
Tu, 2020, Green synthesis of hierarchical metal–organic framework/wood functional composites with superior mechanical properties, Adv. Sci., 7, 1902897, 10.1002/advs.201902897
Shimizu, 2017, Metal Organic Framework, Production and Use Thereof, US patent US9782745B2
Krishna, 2020, Using molecular simulations for elucidation of thermodynamic nonidealities in adsorption of CO 2 -containing mixtures in NaX zeolite, ACS Omega, 5, 20535, 10.1021/acsomega.0c02730
Wang, 2022, Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation, Nat. Commun., 13, 200, 10.1038/s41467-021-27929-7
Thommes, 2015, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051, 10.1515/pac-2014-1117
Sumida, 2012, Carbon dioxide capture in metal–organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Giannozzi, 2009, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502