Functional wood for carbon dioxide capture

Cell Reports Physical Science - Tập 4 - Trang 101269 - 2023
Soumyabrata Roy1, Firuz Alam Philip2, Eliezer Fernando Oliveira3, Gurwinder Singh4, Stalin Joseph4, Ram Manohar Yadav1, Aparna Adumbumkulath1, Sakib Hassan5, Ali Khater1, Xiaowei Wu6, Praveen Bollini6, Ajayan Vinu4, George Shimizu7, Pulickel M. Ajayan1, Md Golam Kibria8, Muhammad M. Rahman1
1Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77030, USA
2Department of Environmental Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada
3São Paulo State Department of Education, São Paulo, Brazil
4Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
5Department of Electrical and Computer Engineering, Rice University, Houston, TX 77030, USA
6William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
7Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
8Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada

Tài liệu tham khảo

Roy, 2018, Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges, ACS Energy Lett., 3, 1938, 10.1021/acsenergylett.8b00740 Smith, 2018, Impact of anthropogenic CO2 emissions on global human nutrition, Nat. Clim. Chang., 8, 834, 10.1038/s41558-018-0253-3 Markewitz, 2012, Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci., 5, 7281, 10.1039/c2ee03403d 2014, 151 Li, 2019, A radiative cooling structural material, Science, 364, 760, 10.1126/science.aau9101 Jiang, 2018, Wood-based nanotechnologies toward sustainability, Adv. Mater., 30, 1703453, 10.1002/adma.201703453 Song, 2018, Processing bulk natural wood into a high-performance structural material, Nature, 554, 224, 10.1038/nature25476 Keplinger, 2019, Nanofibrillated cellulose composites and wood derived scaffolds for functional materials, J. Mater. Chem., 7, 2981, 10.1039/C8TA10711D Castro-Pardo, 2022, A comprehensive overview of carbon dioxide capture: from materials, methods to industrial status, Mater. Today, 60, 227, 10.1016/j.mattod.2022.08.018 Bhattacharyya, 2022, An overview of catalytic CO2 conversion, 411 Sanz-Pérez, 2016, Direct capture of CO2 from ambient air, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173 Samanta, 2012, Post-combustion CO2 capture using solid sorbents: a review, Ind. Eng. Chem. Res., 51, 1438, 10.1021/ie200686q Singh, 2020, Emerging trends in porous materials for CO2 capture and conversion, Chem. Soc. Rev., 49, 4360, 10.1039/D0CS00075B Prasankumar, 2022, Biomass derived hierarchical porous carbon for supercapacitor application and dilute stream CO2 capture, Carbon, 199, 249, 10.1016/j.carbon.2022.07.057 Ding, 2019, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chem. Soc. Rev., 48, 2783, 10.1039/C8CS00829A Trickett, 2017, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater., 2, 17045, 10.1038/natrevmats.2017.45 Hu, 2019, CO2 capture in metal–organic framework adsorbents: an engineering perspective, Adv. Sustain. Syst., 3, 1800080, 10.1002/adsu.201800080 Lin, 2017, Metal-organic frameworks for carbon dioxide capture and methane storage, Adv. Energy Mater., 7, 1601296, 10.1002/aenm.201601296 Yu, 2017, CO2 capture and separations using MOFs: computational and experimental studies, Chem. Rev., 117, 9674, 10.1021/acs.chemrev.6b00626 Belmabkhout, 2016, Low concentration CO2 capture using physical adsorbents: are metal–organic frameworks becoming the new benchmark materials?, Chem. Eng. J., 296, 386, 10.1016/j.cej.2016.03.124 Zhu, 2014, Metal–organic framework composites, Chem. Soc. Rev., 43, 5468, 10.1039/C3CS60472A Piscopo, 2020, Strategies to enhance carbon dioxide capture in metal-organic frameworks, ChemplusChem, 85, 538, 10.1002/cplu.202000072 Lin, 2021, A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture, Science, 374, 1464, 10.1126/science.abi7281 Zhang, 2021, Advances in cellulose-metal organic framework composites: preparation and applications, J. Mater. Chem., 9, 23353, 10.1039/D1TA06468A Pachfule, 2012, One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption, Chem. Commun., 48, 2009, 10.1039/c2cc16877d Ge, 2013, Hierarchically structured metal–organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture, RSC Adv., 3, 25360, 10.1039/c3ra44250k Anbia, 2012, Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide, Chem. Eng. J., 191, 326, 10.1016/j.cej.2012.03.025 Qian, 2012, Synthesis of hierarchical porous carbon monoliths with incorporated metal–organic frameworks for enhancing volumetric based CO2 capture capability, ACS Appl. Mater. Interfaces, 4, 6125, 10.1021/am301772k Xiang, 2011, Metal–organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping, Angew. Chem. Int. Ed. Engl., 50, 491, 10.1002/anie.201004537 Xu, 2019, Sustainable porous carbon materials derived from wood-based biopolymers for CO2 capture, Nanomaterials, 9, 103, 10.3390/nano9010103 Zhu, 2016, Wood-derived materials for green electronics, biological devices, and energy applications, Chem. Rev., 116, 9305, 10.1021/acs.chemrev.6b00225 Liu, 2018, Helical fibers via evaporation-driven self-assembly of surface-acylated cellulose nanowhiskers, Angew. Chem. Int. Ed. Engl., 130, 16561, 10.1002/ange.201808250 Li, 2016, Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation, Green Chem., 18, 1010, 10.1039/C5GC02576A Pereira Oliveira Moreira, 2020, Exploring the hierarchical structure and alignment of wood cellulose fibers for bioinspired anisotropic polymeric composites, ACS Appl. Bio Mater., 3, 2193, 10.1021/acsabm.0c00038 Berglund, 2018, Bioinspired wood nanotechnology for functional materials, Adv. Mater., 30, 1704285, 10.1002/adma.201704285 Li, 2019, Optically transparent wood substrate for perovskite solar cells, ACS Sustain. Chem. Eng., 7, 6061, 10.1021/acssuschemeng.8b06248 Kretschmann, 2003, Velcro mechanics in wood, Nat. Mater., 2, 775, 10.1038/nmat1025 Wimmers, 2017, Wood: a construction material for tall buildings, Nat. Rev. Mater., 2, 17051, 10.1038/natrevmats.2017.51 Li, 2016, Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance, Biomacromolecules, 17, 1358, 10.1021/acs.biomac.6b00145 Jia, 2017, Rich mesostructures derived from natural woods for solar steam generation, Joule, 1, 588, 10.1016/j.joule.2017.09.011 Zhu, 2016, Transparent and haze wood composites for highly efficient broadband light management in solar cells, Nano Energy, 26, 332, 10.1016/j.nanoen.2016.05.020 Fu, 2018, Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures, ACS Nano, 12, 2222, 10.1021/acsnano.8b00005 Chen, 2017, Highly flexible and efficient solar steam generation device, Adv. Mater., 29, 1701756, 10.1002/adma.201701756 Shen, 2016, Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries, Adv. Energy Mater., 6, 1600377, 10.1002/aenm.201600377 Wang, 2012, Layered nanocomposites inspired by the structure and mechanical properties of nacre, Chem. Soc. Rev., 41, 1111, 10.1039/C1CS15106A Militzer, 2002, A synchrotron look at steel, Science, 298, 975, 10.1126/science.1078210 Zhu, 2015, Anomalous scaling law of strength and toughness of cellulose nanopaper, Proc. Natl. Acad. Sci. USA, 112, 8971, 10.1073/pnas.1502870112 Meyers, 2013, Structural biological materials: critical mechanics-materials connections, Science, 339, 773, 10.1126/science.1220854 Gao, 2003, Materials become insensitive to flaws at nanoscale: lessons from nature, Proc. Natl. Acad. Sci. USA, 100, 5597, 10.1073/pnas.0631609100 Zhu, 2004, Retaining ductility, Nat. Mater., 3, 351, 10.1038/nmat1141 Podsiadlo, 2007, Ultrastrong and stiff layered polymer nanocomposites, Science, 318, 80, 10.1126/science.1143176 Wu, 2019, Delignified wood with unprecedented anti-oil properties for the highly efficient separation of crude oil/water mixtures, J. Mater. Chem., 7, 16735, 10.1039/C9TA04913D Gan, 2019, Single-digit-micrometer thickness wood speaker, Nat. Commun., 10, 5084, 10.1038/s41467-019-13053-0 Huang, 2018, Wood derived composites for high sensitivity and wide linear-range pressure sensing, Small, 14, 1801520, 10.1002/smll.201801520 Báder, 2020, FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression, Cellulose, 27, 6811, 10.1007/s10570-020-03131-8 Tu, 2020, Green synthesis of hierarchical metal–organic framework/wood functional composites with superior mechanical properties, Adv. Sci., 7, 1902897, 10.1002/advs.201902897 Shimizu, 2017, Metal Organic Framework, Production and Use Thereof, US patent US9782745B2 Krishna, 2020, Using molecular simulations for elucidation of thermodynamic nonidealities in adsorption of CO 2 -containing mixtures in NaX zeolite, ACS Omega, 5, 20535, 10.1021/acsomega.0c02730 Wang, 2022, Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation, Nat. Commun., 13, 200, 10.1038/s41467-021-27929-7 Thommes, 2015, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051, 10.1515/pac-2014-1117 Sumida, 2012, Carbon dioxide capture in metal–organic frameworks, Chem. Rev., 112, 724, 10.1021/cr2003272 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Giannozzi, 2009, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502