Functional traits of epiphytic lichens respond to alkaline dust pollution

Fungal Ecology - Tập 36 - Trang 81-88 - 2018
Polina Degtjarenko1, Paula Matos2, Liis Marmor1, Cristina Branquinho2, Tiina Randlane1
1University of Tartu, Institute of Ecology and Earth Sciences, Lai 40, 51005, Tartu, Estonia
2CE3C Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016, Lisboa, Portugal

Tài liệu tham khảo

Branquinho, 1999, Improving the use of lichens as biomonitors of atmospheric metal pollution, Sci. Total Environ., 232, 67, 10.1016/S0048-9697(99)00111-4 Branquinho, 2008, Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry, Environ. Pollut., 151, 292, 10.1016/j.envpol.2007.06.014 Branquinho, 2011, The relative impact of lichen symbiotic partners to repeated copper uptake, Environ. Exp. Bot., 72, 84, 10.1016/j.envexpbot.2010.09.016 Branquinho, 2015, Lichens as ecological indicators to track atmospheric changes: future challenges, 77 Conti, 2001, Biological monitoring: lichens as bioindicators of air pollution assessment — a review, Environ. Pollut., 114, 471, 10.1016/S0269-7491(00)00224-4 Degtjarenko, 2016, Changes in bryophyte and lichen communities on Scots pines along an alkaline dust pollution gradient, Environ. Sci. Pollut. Control Ser., 23, 17413, 10.1007/s11356-016-6933-5 Degtjarenko, 2016, Impact of alkaline dust pollution on genetic variation of Usnea subfloridana populations, Fungal Biology, 120, 1165, 10.1016/j.funbio.2016.05.010 Díaz, 2001, Vive la difference: plant functional diversity matters to ecosystem processes, Trends Ecol. Evol., 16, 646, 10.1016/S0169-5347(01)02283-2 Dornelas, 2014, Assemblage time series reveal biodiversity change but not systematic loss, Science, 18, 296, 10.1126/science.1248484 Ellis, 2012, Lichen epiphyte diversity: A species, community and trait-based review, Perspect. Plant. Ecol. Syst., 14, 131, 10.1016/j.ppees.2011.10.001 Environmental Board, 2017 Estonian Land Board, 2015 Estonian Weather Service, 2017 Farmer, 1993, The effects of dust on vegetation — a review, Environ. Pollut., 79, 63, 10.1016/0269-7491(93)90179-R Fiore, 2015, Air quality and climate connections, J. Air Waste Manag. Assoc., 65, 645, 10.1080/10962247.2015.1040526 Frati, 2007, Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm, Environ. Pollut., 146, 311, 10.1016/j.envpol.2006.03.029 Geoguide Baltoscandia, 2012 Gilbert, 1973, Lichens and air pollution, 443 Gilbert, 1976, An alkaline dust effect on epiphytic lichens, Lichenologist, 8, 173, 10.1017/S0024282976000248 Giordani, 2017, Do tree-related factors mediate the response of lichen functional groups to eutrophication?, Plant Biosyst., 151, 1062, 10.1080/11263504.2016.1231141 Giordani, 2012, Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems, Ecol. Indicat., 18, 413, 10.1016/j.ecolind.2011.12.006 Giordani, 2014, Unsustainable cattle load in alpine pastures alters the diversity and the composition of lichen functional groups for nitrogen requirement, Fungal Ecology, 9, 69, 10.1016/j.funeco.2014.02.003 Giordani, 2016, Fire affects the functional diversity of epilithic lichen communities, Fungal Ecology, 20, 49, 10.1016/j.funeco.2015.11.003 Grantz, 2003, Ecological effects of particulate matter, Environ. Int., 29, 213, 10.1016/S0160-4120(02)00181-2 Grime, 1977, Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory, Am. Nat., 111, 1169, 10.1086/283244 Guerreiro, 2015 Guidotti, 2003, Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies, J. Chromatogr. A, 985, 185, 10.1016/S0021-9673(02)01452-8 Guttova, 2017, Functional and morphological traits of epiphytic lichens in the Western Carpathian oak forests reflect the influence of air quality and forest history, Biologia, 72, 1247, 10.1515/biolog-2017-0141 Hawksworth, 1970, Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens, Nature, 227, 145, 10.1038/227145a0 Hedenås, 2000, Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands, Biol. Conserv., 93, 43, 10.1016/S0006-3207(99)00113-5 Jóźwiak, 2009, Influence of cement industry on accumulation of heavy metals in bioindicators, Ecological Chemistry and Engineering, 16, 323 Jüriado, 2016, Environmental factors and ground disturbance affecting the composition of species and functional traits of ground layer lichens on grey dunes and dune heaths of Estonia, Nord. J. Bot., 34, 244, 10.1111/njb.00936 Kortesharju, 1989, Studies on epiphytic lichens and pine bark in the vicinity of a cement works in northern Finland, Silva Fenn., 23, 301, 10.14214/sf.a15553 Laliberté, 2010, A distance-based framework for measuring functional diversity from multiple traits, Ecology, 91, 299, 10.1890/08-2244.1 Lavorel, 2008, Assessing functional diversity in the field – methodology matters!, Funct. Ecol., 22, 134 Leppik, 2015, Functional ecology of rare and common epigeic lichens in alvar grasslands, Fungal Ecology, 13, 66, 10.1016/j.funeco.2014.08.003 Llop, 2012, The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment, Ecol. Indicat., 13, 215, 10.1016/j.ecolind.2011.06.005 Loppi, 2014, Lichens as sentinels for air pollution at remote alpine areas (Italy), Environ. Sci. Pollut. Control Ser., 21, 2563, 10.1007/s11356-013-2181-0 Loppi, 2000, Effect of dust on epiphytic lichen vegetation in the Mediterranean area (Italy and Greece), Isr. J. Plant Sci., 48, 91, 10.1560/EK72-KP5W-U3Q3-AV5Q Mandre, 2000, Changes in forest ecosystems of Viru county influenced by industrial air pollution, Metsanduslikud Uurim., 33, 17 Marmor, 2014, Trentepohlia umbrina on Scots pine as a bioindicator of alkaline dust pollution, Ecol. Indicat., 45, 717, 10.1016/j.ecolind.2014.06.008 Marmor, 2007, Effects of road traffic on bark pH and epiphytic lichens in Tallinn, Folia Cryptogam. Est., 43, 23 Marmor, 2010, The vertical gradient of bark pH and epiphytic macrolichen biota in relation to alkaline air pollution, Ecol. Indicat., 6, 1137, 10.1016/j.ecolind.2010.03.013 Martin, 1992, Impact of the Kunda cement plant (North-East Estonia) emission on the distribution of the epiphytic lichens, Proc. Est. Acad. Sci., 2, 129 Matos, 2015, Lichen traits responding to aridity, J. Ecol., 103, 451 Matos, 2017, Tracking global change using lichen diversity: towards a global-scale ecological indicator, Methods in Ecology and Evolution, 8, 788, 10.1111/2041-210X.12712 McCune, 2002 Middleton, 2017, Desert dust hazards: a global review, Aeolian Research, 24, 53, 10.1016/j.aeolia.2016.12.001 Ministry of the Environment Mouillot, 2012, A functional approach reveals community responses to disturbances, Trends Ecol. Evol., 28, 167, 10.1016/j.tree.2012.10.004 Nash, 2008, Lichen sensitivity to air pollution, 299 Nimis, 2016 Nimis, 2017 Nimis, 2002 Orange, 2001 Paal, 2015, Impact of alkaline cement-dust pollution on boreal Pinus sylvestris forest communities: a study at the bryophyte synusiae level, Ann. Bot. Fenn., 52, 120, 10.5735/085.052.0213 Paal, 2013, Vegetation responses to long-term alkaline cement dust pollution in Pinus sylvestris-dominated boreal forests – niche breadth along the soil pH gradient, Appl. Veg. Sci., 16, 248, 10.1111/j.1654-109X.2012.01224.x Paoli, 2014, Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia), Ecol. Indicat., 40, 127, 10.1016/j.ecolind.2014.01.011 Perens, 2007 Pinho, 2011, Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands, J. Appl. Ecol., 48, 1107, 10.1111/j.1365-2664.2011.02033.x Pinho, 2012, Lichen functional groups as ecological indicators of the effects of land-use in Mediterranean ecosystems, Ecol. Indicat., 15, 36, 10.1016/j.ecolind.2011.09.022 Pinho, 2012, Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands, Biogeosciences, 9, 1205, 10.5194/bg-9-1205-2012 R Core Team, 2013 Randlane, 2004 Randlane, 2016, Lichenized, lichenicolous and allied fungi of Estonia, Ver. December, 31 Randlane, 2017, Diversity of lichens and bryophytes in hybrid aspen plantations in Estonia depends on landscape structure, Can. J. For. Res., 47, 1202, 10.1139/cjfr-2017-0080 Reinsalu, 2008 Rogers, 1990, Ecological strategies of lichens, Lichenologique, 22, 149, 10.1017/S002428299000010X Schmidt, 2001, Measurements of bark pH with a modified flathead electrode, Lichenologist, 33, 456, 10.1006/lich.2001.0341 Seaward, 2004, Lichens and hypertrophication, Bibl. Lichenol., 88, 561 Smith, 2009 Spier, 2010, Is bark pH more important that tree species in determining the composition of nitrophytic or acidophytic lichen floras?, Environ. Pollut., 158, 3607, 10.1016/j.envpol.2010.08.008 Stofer, 2006, Species richness of lichen functional groups in relation to land use intensity, Lichenologique, 38, 331, 10.1017/S0024282906006207 Suding, 2008, Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants, Global Change Biol., 14, 1125, 10.1111/j.1365-2486.2008.01557.x Suija, 2017, Community response to alkaline pollution as an adjusting re-assembly between alternative stable states, J. Veg. Sci., 28, 527, 10.1111/jvs.12506 Sujetovienė, 2015, Monitoring lichen as indicators of atmospheric quality, Vol 1, 87 Topham, 1977, Colonisation, growth, succession and competition, 31 Van Herk, 1999, Mapping of ammonia pollution with epiphytic lichens in The Netherlands, Lichenologist, 31, 9, 10.1006/lich.1998.0138 Van Herk, 2001, Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time, Lichenologist, 33, 419, 10.1006/lich.2001.0337 Vellend, 2017, Estimates of local biodiversity change over time stand up to scrutiny, Ecology, 98, 583, 10.1002/ecy.1660 WBCSD, 2015 WHO, 2013 Zaharopoulou, 1993, Influence of dust from a limestone quarry on chlorophyll degradation of the lichen Physcia adscendens (Fr.) Oliv, Bull. Environ. Contam. Toxicol., 50, 852, 10.1007/BF00209949