Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Độ chịu đựng chức năng đối với sự biến đổi cơ học phát triển từ các nền văn hóa lát cắt hippocampal tổ chức
Tóm tắt
Trong nghiên cứu này, chúng tôi đã đo lường những thay đổi trong hoạt động điện sinh lý sau khi biến dạng cơ học của các nền văn hóa lát cắt não hippocampal sống theo các mức độ biến dạng và tỷ lệ biến dạng liên quan đến chấn thương não chấn thương (TBI). Hoạt động điện sinh lý đã được đo lường trên toàn bộ vùng hippocampus với một mảng điện cực vi mô 60 điện cực. Các tham số điện sinh lý liên quan đến hoạt động tự phát không kích thích (tốc độ bắn sự kiện thần kinh, thời gian và cường độ), các phản ứng kích thích được kích thích (phản ứng tối đa $$R_{\mathrm{max}}$$, dòng kích thích cần thiết cho phản ứng nửa tối đa $$I_{50}$$, và tham số điện sinh lý m đại diện cho tính đồng nhất trong việc bắn), và các phản ứng đôi (tỷ lệ phản ứng đôi tại các khoảng cách giữa các kích thích khác nhau) đã được định lượng cho mỗi khu vực hippocampal (CA1, CA3 và DG). Chúng tôi trình bày các tiêu chí độ chịu đựng chức năng cho hippocampus dưới dạng các mối quan hệ toán học giữa các tham số chấn thương mức mô đầu vào (biến dạng và tỷ lệ biến dạng) và chức năng mạng lưới thần kinh bị thay đổi. Hầu hết các thay đổi trong điện sinh lý phụ thuộc vào biến dạng và tỷ lệ biến dạng một cách phức tạp, độc lập với giải phẫu hippocampal, với một ngoại lệ đáng chú ý là $$R_\mathrm{max}$$. Cho đến khi có thể đo lường trực tiếp được biến dạng mô não in vivo, các mô hình phần tử hữu hạn (FE) sẽ là cần thiết để mô phỏng và dự đoán các hậu quả in vivo của TBI. Một ứng dụng của nghiên cứu của chúng tôi là cung cấp các mối quan hệ chức năng có thể được tích hợp vào các mô hình FE này nhằm tăng cường độ xác thực sinh học cho các tái cấu trúc tai nạn và va chạm bằng cách dự đoán các kết quả sinh học ngoài các phản ứng cơ học.
Từ khóa
#biến dạng cơ học #chấn thương não chấn thương #điện sinh lý #hippocampus #mô hình phần tử hữu hạnTài liệu tham khảo
Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Second international symposium on information theory, pp 267–281
Allen MP (1997) Understanding regression analysis. Plenum Press, New York
Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79. doi:10.1214/09-SS054
Atkins CM, Oliva AA Jr, Alonso OF, Pearse DD, Bramlett HM, Dietrich WD (2007) Modulation of the cAMP signaling pathway after traumatic brain injury. Exp Neurol 208:145–158. doi:10.1016/j.expneurol.2007.08.011
Bain AC, Meaney DF (2000) Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J Biomech Eng 122:615–622
Bayly PV, Black EE, Pedersen RC, Leister EP, Genin GM (2006) In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J Biomech 39:1086–1095. doi:10.1016/j.jbiomech.2005.02.014
Bonislawski DP, Schwarzbach EP, Cohen AS (2007) Brain injury impairs dentate gyrus inhibitory efficacy. Neurobiol Dis 25:163–169. doi:10.1016/j.nbd.2006.09.002
Buchs PA, Stoppini L, Muller D (1993) Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures. Brain Res Dev Brain Res 71:81–91
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York
Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Method Res 33:261–304. doi:10.1177/0049124104268644
Cater HL, Sundstrom LE, Morrison B III (2006) Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate. J Biomech 39:2810–2818. doi:10.1016/j.jbiomech.2005.09.023
Cawley GC, Talbot NLC (2010) On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res 11:2079–2107
Choi JH, Jung HK, Kim T (2006) A new action potential detector using the MTEO and its effects on spike sorting systems at low signal-to-noise ratios. IEEE Trans Biomed Eng 53:738–746. doi:10.1109/TBME.2006.870239
Coats B, Eucker SA, Sullivan S, Margulies SS (2012) Finite element model predictions of intracranial hemorrhage from non-impact, rapid head rotations in the piglet. Int J Dev Neurosci Off J Int Soc Dev Neurosc 30:191–200. doi:10.1016/j.ijdevneu.2011.12.009
Colgan NC, Gilchrist MD, Curran KM (2010) Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations. Prog Biophys Mol Biol 103:304–309. doi:10.1016/j.pbiomolbio.2010.09.008
Commins S, Gigg J, Anderson M, O’Mara SM (1998) Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the subiculum. Neuroreport 9:4109–4113
Dash PK et al (2011) Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One 6:e24648. doi:10.1371/journal.pone.0024648
DiScenna PG, Teyler TJ (1994) Development of inhibitory and excitatory synaptic transmission in the rat dentate gyrus. Hippocampus 4:569–576. doi:10.1002/hipo.450040506
Effgen GB, Hue CD, Vogel E III, Panzer MB, Meaney DF, Bass CR, Morrison B III (2012) A multiscale approach to blast neurotrauma modeling: part II: methodology for inducing blast injury to in vitro models. Front Neurol 3:23. doi:10.3389/fneur.2012.00023
Egert U, Meyer T (2005) Heart on a chip—extracellular multielectrode recordings from cardiac myocytes in vitro. In: Dhein S, Mohr F, Delmar M (eds) Practical methods in cardiovascular research. Springer, Berlin, pp 432–453. doi:10.1007/3-540-26574-0_22
El Sayed T, Mota A, Fraternali F, Ortiz M (2008) Biomechanics of traumatic brain injury. Comput Methods Appl Mech Eng 197:4692–4701. doi:10.1016/j.cma.2008.06.006
Elkin BS, Morrison B III (2007) Region-specific tolerance criteria for the living brain. Stapp Car Crash J 51:127–138
Exo J, Smith C, Smith R, Bell M (2009) Emergency treatment options for pediatric traumatic brain injury. Pediatric Health 3:533–541
Faul M, Xu L, Wald MM, Coronado V, Dellinger AM (2010) Traumatic brain injury in the United States: national estimates of prevalence and incidence, 2002–2006. Inj Prev 16:A268–A268. doi:10.1136/ip.2010.029951
Feng Y, Abney TM, Okamoto RJ, Pless RB, Genin GM, Bayly PV (2010) Relative brain displacement and deformation during constrained mild frontal head impact. J R Soc Interface R Soc 7:1677–1688. doi:10.1098/rsif.2010.0210
Finan JD, Elkin BS, Pearson EM, Kalbian IL, Morrison B III (2012) Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age. Ann Biomed Eng 40:70–78. doi:10.1007/s10439-011-0394-2
Finkelstein E, Corso PS, Miller TR (2006) The incidence and economic burden of injuries in the United States. Oxford University Press, Oxford
Fueta Y, Kawano H, Ono T, Mita T, Fukata K, Ohno K (1998) Regional differences in hippocampal excitability manifested by paired-pulse stimulation of genetically epileptic El mice. Brain Res 779:324–328
Galbraith JA, Thibault LE, Matteson DR (1993) Mechanical and electrical responses of the squid giant axon to simple elongation. J Biomech Eng 115:13–22
Gao X, Deng P, Xu ZC, Chen J (2011) Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus. PLoS One 6:e24566. doi:10.1371/journal.pone.0024566
Gibson CJ, Meyer RC, Hamm RJ (2010) Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci 17:38. doi:10.1186/1423-0127-17-38
Giordano C, Cloots RJ, van Dommelen JA, Kleiven S (2014) The influence of anisotropy on brain injury prediction. J Biomech 47:1052–1059. doi:10.1016/j.jbiomech.2013.12.036
Giordano C, Kleiven S (2014) Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue. J R Soc Interface R Soc 11:20130914. doi:10.1098/rsif.2013.0914
Giza CC, Maria NS, Hovda DA (2006) N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma 23:950–961. doi:10.1089/neu.2006.23.950
Glatting G, Kletting P, Reske SN, Hohl K, Ring C (2007) Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys 34:4285–4292
Goforth PB, Ellis EF, Satin LS (2004) Mechanical injury modulates AMPA receptor kinetics via an NMDA receptor-dependent pathway. J Neurotrauma 21:719–732. doi:10.1089/0897715041269704
Gulyas AI, Megias M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19:10082–10097
Guo Y, DuBois Bowman F (2008) Predicting the brain response to treatment using a Bayesian hierarchical model with application to a study of schizophrenia. Hum Brain Mapp 29:1092–1109. doi:10.1002/hbm.20450
Hardy WN et al (2007) A study of the response of the human cadaver head to impact. Stapp Car Crash J 51:17–80
Hefft S, Jonas P (2005) Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat Neurosci 8:1319–1328. doi:10.1038/nn1542
Ji K, Miyauchi J, Tsirka SE (2013) Microglia: an active player in the regulation of synaptic activity. Neural Plast 2013:627325. doi:10.1155/2013/627325
Joy RM, Albertson TE (1993) NMDA receptors have a dominant role in population spike-paired pulse facilitation in the dentate gyrus of urethane-anesthetized rats. Brain Res 604:273–282
Kao CQ, Goforth PB, Ellis EF, Satin LS (2004) Potentiation of GABA(A) currents after mechanical injury of cortical neurons. J Neurotrauma 21:259–270. doi:10.1089/089771504322972059
Kettenmann H, Banati R, Walz W (1993) Electrophysiological behavior of microglia. Glia 7:93–101. doi:10.1002/glia.440070115
Kharlamov EA et al (2011) Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 95:20–34. doi:10.1016/j.eplepsyres.2011.02.008
Kimpara H, Iwamoto M (2012) Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann Biomed Eng 40:114–126. doi:10.1007/s10439-011-0414-2
Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848. doi:10.1038/nature01374
Kleiven S (2006) Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int J Crashworthiness 11:65–79. doi:10.1533/ijcr.2005.0384
Kleiven S (2007) Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J 51:81–114
Kleiven S, Hardy WN (2002) Correlation of an FE model of the human head with local brain motion-consequences for injury prediction. Stapp Car Crash J 46:123–144
Kolias AG, Guilfoyle MR, Helmy A, Allanson J, Hutchinson PJ (2013) Traumatic brain injury in adults. Pract Neurol. doi:10.1136/practneurol-2012-000268
Lamy M, Baumgartner D, Yoganandan N, Stemper BD, Willinger R (2013) Experimentally validated three-dimensional finite element model of the rat for mild traumatic brain injury. Med Biol Eng Comput 51:353–365. doi:10.1007/s11517-012-1004-7
Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378
Lea PM, Custer SJ, Vicini S, Faden AI (2002) Neuronal and glial mGluR5 modulation prevents stretch-induced enhancement of NMDA receptor current. Pharmacol Biochem Behav 73:287–298
Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741. doi:10.1016/S1474-4422(08)70164-9
Mao H, Elkin BS, Genthikatti VV, Morrison B 3rd, Yang KH (2013) Why is CA3 more vulnerable than CA1 in experimental models of controlled cortical impact-induced brain injury? J Neurotrauma 30:1521–1530. doi:10.1089/neu.2012.2520
Margineanu DG, Wulfert E (2000) Differential paired-pulse effects of gabazine and bicuculline in rat hippocampal CA3 area. Brain Res Bull 51:69–74
Margulies SS, Thibault LE (1992) A proposed tolerance criterion for diffuse axonal injury in man. J Biomech 25:917–923
McAllister TW, Ford JC, Ji S, Beckwith JG, Flashman LA, Paulsen K, Greenwald RM (2012) Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann Biomed Eng 40:127–140. doi:10.1007/s10439-011-0402-6
Molinaro AM, Simon R, Pfeiffer RM (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21:3301–3307. doi:10.1093/bioinformatics/bti499
Morrison B III, Cater HL, Benham CD, Sundstrom LE (2006) An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J Neurosci Methods 150:192–201. doi:10.1016/j.jneumeth.2005.06.014
Morrison B III, Cater HL, Wang CC, Thomas FC, Hung CT, Ateshian GA, Sundstrom LE (2003) A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J 47:93–105
Moss WC, King MJ, Blackman EG (2012) Towards reducing impact-induced brain injury: lessons from a computational study of army and football helmet pads. Comput Methods Biomech Biomed Eng. doi:10.1080/10255842.2012.739162
Narayan RK et al (2002) Clinical trials in head injury. J Neurotrauma 19:503–557. doi:10.1089/089771502753754037
Navarrete M, Perea G, Maglio L, Pastor J, Garcia de Sola R, Araque A (2013) Astrocyte calcium signal and gliotransmission in human brain tissue. Cereb Cortex 23:1240–1246. doi:10.1093/cercor/bhs122
Nirula R, Mock CN, Nathens AB, Grossman DC (2004) The new car assessment program: does it predict the relative safety of vehicles in actual crashes? J Trauma 57:779–786
Noraberg J, Kristensen BW, Zimmer J (1999) Markers for neuronal degeneration in organotypic slice cultures. Brain Res Brain Res Protoc 3:278–290
Ommaya AK, Ommaya AK, Yarnell P, Hirsch AE, Harris EH (1967) Scaling of experimental data on cerebral concussion in sub-human primates to concussion threshold for man. SAE Technical Papers
Ounpraseuth S, Lensing SY, Spencer HJ, Kodell RL (2012) Estimating misclassification error: a closer look at cross-validation based methods. BMC Res Notes 5:656. doi:10.1186/1756-0500-5-656
Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109:E197–205. doi:10.1073/pnas.1111098109
Patton DA, McIntosh AS, Kleiven S, Fréchède B (2012) Injury data from unhelmeted football head impacts evaluated against critical strain tolerance curves. Proc Inst Mech Eng Part P J Sports Eng Technol 226:177–184. doi:10.1177/1754337112438305
Pellman EJ, Viano DC, Tucker AM, Casson IR, Waeckerle JF (2003) Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53:799–812 (discussion 812–794)
Post A, Hoshizaki TB, Gilchrist M, Brien S (2012) Analysis of the influence of independent variables used for reconstruction of a traumatic brain injury incident. Proc Inst Mech Eng Part B J Sports 226:290–298. doi:10.1177/1754337112436629
Rowson S et al (2012) Rotational head kinematics in football impacts: an injury risk function for concussion. Ann Biomed Eng 40:1–13. doi:10.1007/s10439-011-0392-4
Sabet AA, Christoforou E, Zatlin B, Genin GM, Bayly PV (2008) Deformation of the human brain induced by mild angular head acceleration. J Biomech 41:307–315. doi:10.1016/j.jbiomech.2007.09.016
Savanthrapadian S, Wolff AR, Logan BJ, Eckert MJ, Bilkey DK, Abraham WC (2013) Enhanced hippocampal neuronal excitability and LTP persistence associated with reduced behavioral flexibility in the maternal immune activation model of schizophrenia. Hippocampus 23:1395–1409. doi:10.1002/hipo.22193
Scheff SW, Price DA (2006) Alzheimer’s disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimer’s Dis 9:101–115
Shreiber DI, Bain AC, Ross DT, Smith DH, Gennarelli TA, McIntosh TK, Meaney DF (1999) Experimental investigation of cerebral contusion: histopathological and immunohistochemical evaluation of dynamic cortical deformation. J Neuropathol Exp Neurol 58:153–164
Singh A, Lu Y, Chen C, Kallakuri S, Cavanaugh JM (2006) A new model of traumatic axonal injury to determine the effects of strain and displacement rates. Stapp Car Crash J 50:601–623
Sloviter RS (1991) Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA-mediated mechanisms that regulate excitability in vivo. Hippocampus 1:31–40. doi:10.1002/hipo.450010105
Stanford IM, Wheal HV, Chad JE (1995) Bicuculline enhances the late GABAB receptor-mediated paired-pulse inhibition observed in rat hippocampal slices. Eur J Pharmacol 277:229–234
Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56:933–944
Takhounts EG, Eppinger RH, Campbell JQ, Tannous RE, Power ED, Shook LS (2003) On the development of the SIMon finite element head model. Stapp Car Crash J 47:107–133
Takhounts EG et al (2008) Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J 52:1–31
Viano DC, Casson IR, Pellman EJ, Zhang L, King AI, Yang KH (2005) Concussion in professional football: brain responses by finite element analysis: part 9. Neurosurgery 57:891–916 (discussion 891–916)
Viskontas IV, Knowlton BJ, Steinmetz PN, Fried I (2006) Differences in mnemonic processing by neurons in the human hippocampus and parahippocampal regions. J Cogn Neurosci 18:1654–1662. doi:10.1162/jocn.2006.18.10.1654
Witgen BM, Lifshitz J, Smith ML, Schwarzbach E, Liang SL, Grady MS, Cohen AS (2005) Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation. Neuroscience 133:1–15. doi:10.1016/j.neuroscience.2005.01.052
Wright RM, Ramesh KT (2012) An axonal strain injury criterion for traumatic brain injury. Biomech Model Mechanobiol 11:245–260. doi:10.1007/s10237-011-0307-1
Yu Z, Morrison B III (2010) Experimental mild traumatic brain injury induces functional alteration of the developing hippocampus. J Neurophysiol 103:499–510. doi:10.1152/jn.00775.2009
Zhang L, Rzigalinski BA, Ellis EF, Satin LS (1996) Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science 274:1921–1923
Zhang L, Yang KH, King AI (2004) A proposed injury threshold for mild traumatic brain injury. J Biomech Eng 126:226–236
Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13–31. doi:10.1146/annurev.ne.12.030189.000305