Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection

Cell Reports Physical Science - Tập 4 - Trang 101249 - 2023
Jingran Chen1, Ying Li1, Zhen Liu1
1State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China

Tài liệu tham khảo

Zhong, 2003, Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003, Lancet, 362, 1353, 10.1016/S0140-6736(03)14630-2 Zaki, 2012, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, N. Engl. J. Med., 367, 1814, 10.1056/NEJMoa1211721 de Wit, 2016, SARS and MERS: recent insights into emerging coronaviruses, Nat. Rev. Microbiol., 14, 523, 10.1038/nrmicro.2016.81 Hu, 2021, Characteristics of SARS-CoV-2 and COVID-19, Nat. Rev. Microbiol., 19, 141, 10.1038/s41579-020-00459-7 Du, 2021, Neutralizing antibodies for the prevention and treatment of COVID-19, Cell. Mol. Immunol., 18, 2293, 10.1038/s41423-021-00752-2 Ciotti, 2020, The COVID-19 pandemic, Crit. Rev. Clin. Lab Sci., 57, 365, 10.1080/10408363.2020.1783198 Zhang, 2022, Functional nucleic acids as modular components against SARS-CoV-2: from diagnosis to therapeutics, Biosens. Bioelectron., 201, 113944, 10.1016/j.bios.2021.113944 Wandtke, 2022, Aptamers—diagnostic and therapeutic solution in SARS-CoV-2, Int. J. Mol. Sci., 23, 1412, 10.3390/ijms23031412 Zhang, 2022, Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19, Trends Biotechnol., 10.1016/j.tibtech.2022.07.012 Sun, 2021, Aptamer blocking strategy inhibits SARS-CoV-2 virus infection, Angew. Chem. Int. Ed. Engl., 60, 10266, 10.1002/anie.202100225 Song, 2020, Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein, Anal. Chem., 92, 9895, 10.1021/acs.analchem.0c01394 Sun, 2021, Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape, J. Am. Chem. Soc., 143, 21541, 10.1021/jacs.1c08226 Sun, 2022, Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape, Nano Today, 44, 101499, 10.1016/j.nantod.2022.101499 Liu, 2021, Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection, Angew. Chem. Int. Ed. Engl., 60, 10273, 10.1002/anie.202100345 Yang, 2021, Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1, Signal Transduct. Target. Ther., 6, 227, 10.1038/s41392-021-00649-6 Valero, 2021, A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2112942118 Jangra, 2021, SARS-CoV-2 spike E484K mutation reduces antibody neutralisation, Lancet. Microbe, 2, e283, 10.1016/S2666-5247(21)00068-9 Schmitz, 2021, A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism, Angew. Chem. Int. Ed. Engl., 60, 10279, 10.1002/anie.202100316 Silwal, 2022, DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD-independent or dependent approach, Theranostics, 12, 5522, 10.7150/thno.74428 Xia, 2019, A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike, Sci. Adv., 5, eaav4580, 10.1126/sciadv.aav4580 Xia, 2020, Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion, Cell Res., 30, 343, 10.1038/s41422-020-0305-x Chi, 2020, A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2, Science, 369, 650, 10.1126/science.abc6952 Chen, 2022, A topology-matching spike protein-capping tetrahedral DNA nanocrown for SARS-CoV-2 neutralization, CCS Chem., 0, 1, 10.31635/ccschem.022.202101780 Li, 2022, High mannose-specific aptamers for broad-spectrum virus inhibition and cancer targeting, CCS Chem., 0, 1, 10.31635/ccschem.021.202101672 Yoshikawa, 2021, Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms, Nat. Commun., 12, 7106, 10.1038/s41467-021-26933-1 Tate, 2014, Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection, Viruses, 6, 1294, 10.3390/v6031294 Kwon, 2014, An RNA aptamer that specifically binds to the glycosylated hemagglutinin of avian influenza virus and suppresses viral infection in cells, PLoS One, 9, e97574, 10.1371/journal.pone.0097574 Park, 2011, Selection of an antiviral RNA aptamer against hemagglutinin of the subtype H5 avian influenza virus, Nucleic Acid Ther., 21, 395, 10.1089/nat.2011.0321 Lai, 2019, A novel TNF-α-targeting aptamer for TNF-α-mediated acute lung injury and acute liver failure, Theranostics, 9, 1741, 10.7150/thno.30972 Yang, 2022, Aptamer blocking S-TLR4 interaction selectively inhibits SARS-CoV-2 induced inflammation, Signal Transduct. Target. Ther., 7, 120, 10.1038/s41392-022-00968-2 Boshtam, 2017, Aptamers against pro- and anti-inflammatory cytokines: a review, Inflammation, 40, 340, 10.1007/s10753-016-0477-1 Vorobyeva, 2016, Aptamers against immunologic targets: diagnostic and therapeutic prospects, Nucleic Acid Ther., 26, 52, 10.1089/nat.2015.0568 Momeni, 2022, Identification of G-quadruplex anti-Interleukin-2 aptamer with high specificity through SELEX stringency, Heliyon, 8, e09721, 10.1016/j.heliyon.2022.e09721 Liu, 2016, The cytokine storm of severe influenza and development of immunomodulatory therapy, Cell. Mol. Immunol., 13, 3, 10.1038/cmi.2015.74 Gao, 2021, Perspectives on SARS-CoV-2 main protease inhibitors, J. Med. Chem., 64, 16922, 10.1021/acs.jmedchem.1c00409 Dai, 2020, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science, 368, 1331, 10.1126/science.abb4489 Morena, 2021, De novo ssRNA aptamers against the SARS-CoV-2 main protease: in silico design and molecular dynamics simulation, Int. J. Mol. Sci., 22, 6874, 10.3390/ijms22136874 Jang, 2008, Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase, Biochem. Biophys. Res. Commun., 366, 738, 10.1016/j.bbrc.2007.12.020 Weisshoff, 2020, Aptamer BC 007 - efficient binder of spreading-crucial SARS-CoV-2 proteins, Heliyon, 6, e05421, 10.1016/j.heliyon.2020.e05421 Haberland, 2021, Aptamer BC 007’s affinity to specific and less-specific anti-SARS-CoV-2 neutralizing antibodies, Viruses, 13, 932, 10.3390/v13050932 Li, 2008, Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety, J. Am. Chem. Soc., 130, 12636, 10.1021/ja801510d Qin, 2021 Mi, 2010, In vivo selection of tumor-targeting RNA motifs, Nat. Chem. Biol., 6, 22, 10.1038/nchembio.277 Rohloff, 2014, Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents, Mol. Ther. Nucleic Acids, 3, e201, 10.1038/mtna.2014.49 Wang, 2019, Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development, Biotechnol. Adv., 37, 28, 10.1016/j.biotechadv.2018.11.001 Lee, 2022, De novo selected hACE2 mimics that integrate hotspot peptides with aptameric scaffolds for binding tolerance of SARS-CoV-2 variants, Sci. Adv., 8, eabq6207, 10.1126/sciadv.abq6207 Sánchez-Báscones, 2021, Aptamers against viruses: selection strategies and bioanalytical applications, TrAC, Trends Anal. Chem., 143, 116349, 10.1016/j.trac.2021.116349 Duclair, 2015, High-affinity RNA aptamers against the HIV-1 protease inhibit both in vitro protease activity and late events of viral replication, Mol. Ther. Nucleic Acids, 4, e228, 10.1038/mtna.2015.1 Kwon, 2020, Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition, Nat. Chem., 12, 26, 10.1038/s41557-019-0369-8 Sigl, 2021, Programmable icosahedral shell system for virus trapping, Nat. Mater., 20, 1281, 10.1038/s41563-021-01020-4 Monferrer, 2022, Broad-spectrum virus trapping with heparan sulfate-modified DNA origami shells, ACS Nano, 16, 20002, 10.1021/acsnano.1c11328 Zhang, 2022, Spatially patterned neutralizing icosahedral DNA nanocage for efficient SARS-CoV-2 blocking, J. Am. Chem. Soc., 144, 13146, 10.1021/jacs.2c02764 Chauhan, 2022, Net-shaped DNA nanostructures designed for rapid/sensitive detection and potential inhibition of the SARS-CoV-2 virus, J. Am. Chem. Soc. Wan, 2022, Spatial- and valence-matched neutralizing DNA nanostructure blocks wild-type SARS-CoV-2 and omicron variant infection, ACS Nano, 16, 15310, 10.1021/acsnano.2c06803 Knappe, 2021, In situ covalent functionalization of DNA origami virus-like particles, ACS Nano, 15, 14316, 10.1021/acsnano.1c03158 Veneziano, 2020, Role of nanoscale antigen organization on B-cell activation probed using DNA origami, Nat. Nanotechnol., 15, 716, 10.1038/s41565-020-0719-0 Wamhoff, 2022, Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds, Preprint at bioRxiv Oktay, 2022, DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response, bioRxiv Zhang, 2022, Elucidating the effect of nanoscale receptor-binding domain organization on SARS-CoV-2 infection and immunity activation with DNA origami, J. Am. Chem. Soc., 144, 21295, 10.1021/jacs.2c09229 Zeng, 2022, Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro, Nat. Commun., 13, 2766, 10.1038/s41467-022-30546-7 Su, 2021, Efficient inhibition of SARS-CoV-2 using chimeric antisense oligonucleotides through RNase L activation, Angew. Chem. Int. Ed. Engl., 60, 21662, 10.1002/anie.202105942 Baldassi, 2022, Inhibition of SARS-CoV-2 replication in the lung with siRNA/VIPER polyplexes, J. Control. Release, 345, 661, 10.1016/j.jconrel.2022.03.051 Idris, 2021, A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19, Mol. Ther., 29, 2219, 10.1016/j.ymthe.2021.05.004 Gao, 2022, A lysosome-activated tetrahedral nanobox for encapsulated siRNA delivery, Adv. Mater., 34, 2201731, 10.1002/adma.202201731 Khaitov, 2021, Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation, Allergy, 76, 2840, 10.1111/all.14850 Tolksdorf, 2021, Inhibition of SARS-CoV-2 replication by a small interfering RNA targeting the leader sequence, Viruses, 13, 2030, 10.3390/v13102030 Ambike, 2022, Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread, Nucleic Acids Res., 50, 333, 10.1093/nar/gkab1248 Traube, 2022, Suppression of SARS-CoV-2 replication with stabilized and click-chemistry modified siRNAs, Angew. Chem. Int. Ed. Engl., 61, e202204556, 10.1002/anie.202204556 Chang, 2022, A siRNA targets and inhibits a broad range of SARS-CoV-2 infections including Delta variant, EMBO Mol. Med., 14, e15298, 10.15252/emmm.202115298 Hum, 2021, MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19, Drugs, 81, 517, 10.1007/s40265-021-01474-5 Marchi, 2021, The role of microRNAs in modulating SARS-CoV-2 infection in human cells: a systematic review, Infect. Genet. Evol., 91, 104832, 10.1016/j.meegid.2021.104832 Pfafenrot, 2021, Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs, Nucleic Acids Res., 49, 12502, 10.1093/nar/gkab1096 Knott, 2018, CRISPR-Cas guides the future of genetic engineering, Science, 361, 866, 10.1126/science.aat5011 van der Oost, 2014, Unravelling the structural and mechanistic basis of CRISPR–Cas systems, Nat. Rev. Microbiol., 12, 479, 10.1038/nrmicro3279 Abbott, 2020, Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza, Cell, 181, 865, 10.1016/j.cell.2020.04.020 Lin, 2021, A comprehensive analysis and resource to use CRISPR-Cas13 for broad-spectrum targeting of RNA viruses, Cell Rep. Med., 2, 100245, 10.1016/j.xcrm.2021.100245 Haniff, 2020, Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders, ACS Cent. Sci., 6, 1713, 10.1021/acscentsci.0c00984 Dai, 2021, Viral targets for vaccines against COVID-19, Nat. Rev. Immunol., 21, 73, 10.1038/s41577-020-00480-0 Pushparajah, 2021, Advances in gene-based vaccine platforms to address the COVID-19 pandemic, Adv. Drug Deliv. Rev., 170, 113, 10.1016/j.addr.2021.01.003 Dong, 2020, A systematic review of SARS-CoV-2 vaccine candidates, Signal Transduct. Target. Ther., 5, 237, 10.1038/s41392-020-00352-y Chalkias, 2022, A bivalent omicron-containing booster vaccine against covid-19, N. Engl. J. Med., 387, 1279, 10.1056/NEJMoa2208343 Chalkias, 2022, Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: a phase 2/3 trial, Nat. Med., 28, 2388, 10.1038/s41591-022-02031-7 Chalkias, 2022, Neutralization of omicron subvariant BA.2.75 after bivalent vaccination, N. Engl. J. Med., 387, 2194, 10.1056/NEJMc2212772 Lamers, 2022, SARS-CoV-2 pathogenesis, Nat. Rev. Microbiol., 20, 270, 10.1038/s41579-022-00713-0 Harrison, 2020, Mechanisms of SARS-CoV-2 transmission and pathogenesis, Trends Immunol., 41, 1100, 10.1016/j.it.2020.10.004 Gordon, 2020, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, 583, 459, 10.1038/s41586-020-2286-9 Ke, 2020, Structures and distributions of SARS-CoV-2 spike proteins on intact virions, Nature, 588, 498, 10.1038/s41586-020-2665-2 Watanabe, 2020, Site-specific glycan analysis of the SARS-CoV-2 spike, Science, 369, 330, 10.1126/science.abb9983 Jackson, 2022, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23, 3, 10.1038/s41580-021-00418-x Moore, 2020, Cytokine release syndrome in severe COVID-19, Science, 368, 473, 10.1126/science.abb8925 Jose, 2020, COVID-19 cytokine storm: the interplay between inflammation and coagulation, Lancet Respir. Med., 8, e46, 10.1016/S2213-2600(20)30216-2 Karki, 2021, Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes, Cell, 184, 149, 10.1016/j.cell.2020.11.025 Li, 2020, Updated approaches against SARS-CoV-2, Antimicrob. Agents Chemother., 64, e00483, 10.1128/AAC.00483-20 Taylor, 2021, Neutralizing monoclonal antibodies for treatment of COVID-19, Nat. Rev. Immunol., 21, 382, 10.1038/s41577-021-00542-x Westendorf, 2022, LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants, Cell Rep., 39, 110812, 10.1016/j.celrep.2022.110812 Xu, 2020, Effective treatment of severe COVID-19 patients with tocilizumab, Proc. Natl. Acad. Sci. USA, 117, 10970, 10.1073/pnas.2005615117 Lu, 2022, Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants, Virol. Sin., 37, 238, 10.1016/j.virs.2022.02.005 Owen, 2021, An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19, Science, 374, 1586, 10.1126/science.abl4784 Kabinger, 2021, Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis, Nat. Struct. Mol. Biol., 28, 740, 10.1038/s41594-021-00651-0 Brevini, 2022, FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2, Nature, 10.1038/s41586-022-05594-0 Liu, 2020, Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike, Nature, 584, 450, 10.1038/s41586-020-2571-7 Sun, 2022, Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2, Nat. Microbiol., 7, 1063, 10.1038/s41564-022-01155-3 Pinto, 2021, Broad betacoronavirus neutralization by a stem helix-specific human antibody, Science, 373, 1109, 10.1126/science.abj3321 FDA Announces Bebtelovimab Is Not Currently Authorized in Any US Region. (2022). https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-bebtelovimab-not-currently-authorized-any-us-region Lee, 2020, Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies, Nat. Microbiol., 5, 1185, 10.1038/s41564-020-00789-5 Delany, 2014, Vaccines for the 21st century, EMBO Mol. Med., 6, 708, 10.1002/emmm.201403876 Edghill-Smith, 2005, Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus, Nat. Med., 11, 740, 10.1038/nm1261 Minor, 2015, Live attenuated vaccines: historical successes and current challenges, Virology, 479-480, 379, 10.1016/j.virol.2015.03.032 2020 Sourimant, 2022, 4’-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication, Science, 375, 161, 10.1126/science.abj5508 Dunn, 2017, Analysis of aptamer discovery and technology, Nat. Rev. Chem, 1, 0076, 10.1038/s41570-017-0076 Zhou, 2017, Aptamers as targeted therapeutics: current potential and challenges, Nat. Rev. Drug Discov., 16, 181, 10.1038/nrd.2016.199 Zhang, 2020, Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment, Nat. Protoc., 15, 2728, 10.1038/s41596-020-0355-z Tian, 2022, Prospects and challenges of dynamic DNA nanostructures in biomedical applications, Bone Res., 10, 40, 10.1038/s41413-022-00212-1 Zhang, 2022, Facilitating in situ tumor imaging with a tetrahedral DNA framework-enhanced hybridization chain reaction probe, Adv. Funct. Mater., 32, 2109728, 10.1002/adfm.202109728 Kacherovsky, 2021, Discovery and characterization of spike N-terminal domain-binding aptamers for rapid SARS-CoV-2 detection, Angew. Chem. Int. Ed. Engl., 60, 21211, 10.1002/anie.202107730 Zhang, 2021, High-affinity dimeric aptamers enable the rapid electrochemical detection of wild-type and B.1.1.7 SARS-CoV-2 in unprocessed saliva, Angew. Chem. Int. Ed. Engl., 60, 24266, 10.1002/anie.202110819 Zhang, 2022, A universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern, Chemistry, 28, e202200078, 10.1002/chem.202200078 Zhang, 2020, Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers, Chem. Commun., 56, 10235, 10.1039/D0CC03993D Li, 2022, Label-free digital detection of intact virions by enhanced scattering microscopy, J. Am. Chem. Soc., 144, 1498, 10.1021/jacs.1c09579 Li, 2021, Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library, Nucleic Acids Res., 49, 7267, 10.1093/nar/gkab574 Peinetti, 2021, Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors, Sci. Adv., 7, eabh2848, 10.1126/sciadv.abh2848 Abrego-Martinez, 2022, Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy, Biosens. Bioelectron., 195, 113595, 10.1016/j.bios.2021.113595 Gupta, 2021, A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2, Mol. Ther. Nucleic Acids, 26, 321, 10.1016/j.omtn.2021.06.014 Shi, 2021, Aptamer-functionalized nanochannels for one-step detection of SARS-CoV-2 in samples from COVID-19 patients, Anal. Chem., 93, 16646, 10.1021/acs.analchem.1c04156 Deng, 2021, Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay, J. Am. Chem. Soc., 143, 7261, 10.1021/jacs.1c02929 Rizkita, 2021, The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a review, J. Pharm. Anal., 11, 265, 10.1016/j.jpha.2021.03.003 Ghosh, 2020, siRNA could be a potential therapy for COVID-19, EXCLI J., 19, 528 Saw, 2020, siRNA therapeutics: a clinical reality, Sci. China Life Sci., 63, 485, 10.1007/s11427-018-9438-y Yu, 2019, The emerging roles and functions of circular RNAs and their generation, J. Biomed. Sci., 26, 29, 10.1186/s12929-019-0523-z Pejchal, 2011, A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield, Science, 334, 1097, 10.1126/science.1213256 Lennemann, 2014, Comprehensive functional analysis of N-linked glycans on ebola virus GP1, mBio, 5, 10.1128/mBio.00862-13 Watanabe, 2018, Structure of the Lassa virus glycan shield provides a model for immunological resistance, Proc. Natl. Acad. Sci. USA, 115, 7320, 10.1073/pnas.1803990115 Gong, 2021, The glycosylation in SARS-CoV-2 and its receptor ACE2, Signal Transduct. Target. Ther., 6, 396, 10.1038/s41392-021-00809-8 Chen, 2014, Role of N-linked glycans in the interactions of recombinant HCV envelope glycoproteins with cellular receptors, ACS Chem. Biol., 9, 1437, 10.1021/cb500121c Bonomelli, 2011, The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade, PLoS One, 6, e23521, 10.1371/journal.pone.0023521 Horiya, 2014, Recent strategies targeting HIV glycans in vaccine design, Nat. Chem. Biol., 10, 990, 10.1038/nchembio.1685 Tommasone, 2019, The challenges of glycan recognition with natural and artificial receptors, Chem. Soc. Rev., 48, 5488, 10.1039/C8CS00768C Medzhitov, 2007, Recognition of microorganisms and activation of the immune response, Nature, 449, 819, 10.1038/nature06246 Meng, 2021, Capturing cytokines with advanced materials: a potential strategy to tackle COVID-19 cytokine storm, Adv. Mater., 33, 2100012, 10.1002/adma.202100012