Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection
Tài liệu tham khảo
Zhong, 2003, Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003, Lancet, 362, 1353, 10.1016/S0140-6736(03)14630-2
Zaki, 2012, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, N. Engl. J. Med., 367, 1814, 10.1056/NEJMoa1211721
de Wit, 2016, SARS and MERS: recent insights into emerging coronaviruses, Nat. Rev. Microbiol., 14, 523, 10.1038/nrmicro.2016.81
Hu, 2021, Characteristics of SARS-CoV-2 and COVID-19, Nat. Rev. Microbiol., 19, 141, 10.1038/s41579-020-00459-7
Du, 2021, Neutralizing antibodies for the prevention and treatment of COVID-19, Cell. Mol. Immunol., 18, 2293, 10.1038/s41423-021-00752-2
Ciotti, 2020, The COVID-19 pandemic, Crit. Rev. Clin. Lab Sci., 57, 365, 10.1080/10408363.2020.1783198
Zhang, 2022, Functional nucleic acids as modular components against SARS-CoV-2: from diagnosis to therapeutics, Biosens. Bioelectron., 201, 113944, 10.1016/j.bios.2021.113944
Wandtke, 2022, Aptamers—diagnostic and therapeutic solution in SARS-CoV-2, Int. J. Mol. Sci., 23, 1412, 10.3390/ijms23031412
Zhang, 2022, Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19, Trends Biotechnol., 10.1016/j.tibtech.2022.07.012
Sun, 2021, Aptamer blocking strategy inhibits SARS-CoV-2 virus infection, Angew. Chem. Int. Ed. Engl., 60, 10266, 10.1002/anie.202100225
Song, 2020, Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein, Anal. Chem., 92, 9895, 10.1021/acs.analchem.0c01394
Sun, 2021, Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape, J. Am. Chem. Soc., 143, 21541, 10.1021/jacs.1c08226
Sun, 2022, Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape, Nano Today, 44, 101499, 10.1016/j.nantod.2022.101499
Liu, 2021, Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection, Angew. Chem. Int. Ed. Engl., 60, 10273, 10.1002/anie.202100345
Yang, 2021, Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1, Signal Transduct. Target. Ther., 6, 227, 10.1038/s41392-021-00649-6
Valero, 2021, A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2112942118
Jangra, 2021, SARS-CoV-2 spike E484K mutation reduces antibody neutralisation, Lancet. Microbe, 2, e283, 10.1016/S2666-5247(21)00068-9
Schmitz, 2021, A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism, Angew. Chem. Int. Ed. Engl., 60, 10279, 10.1002/anie.202100316
Silwal, 2022, DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD-independent or dependent approach, Theranostics, 12, 5522, 10.7150/thno.74428
Xia, 2019, A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike, Sci. Adv., 5, eaav4580, 10.1126/sciadv.aav4580
Xia, 2020, Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion, Cell Res., 30, 343, 10.1038/s41422-020-0305-x
Chi, 2020, A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2, Science, 369, 650, 10.1126/science.abc6952
Chen, 2022, A topology-matching spike protein-capping tetrahedral DNA nanocrown for SARS-CoV-2 neutralization, CCS Chem., 0, 1, 10.31635/ccschem.022.202101780
Li, 2022, High mannose-specific aptamers for broad-spectrum virus inhibition and cancer targeting, CCS Chem., 0, 1, 10.31635/ccschem.021.202101672
Yoshikawa, 2021, Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms, Nat. Commun., 12, 7106, 10.1038/s41467-021-26933-1
Tate, 2014, Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection, Viruses, 6, 1294, 10.3390/v6031294
Kwon, 2014, An RNA aptamer that specifically binds to the glycosylated hemagglutinin of avian influenza virus and suppresses viral infection in cells, PLoS One, 9, e97574, 10.1371/journal.pone.0097574
Park, 2011, Selection of an antiviral RNA aptamer against hemagglutinin of the subtype H5 avian influenza virus, Nucleic Acid Ther., 21, 395, 10.1089/nat.2011.0321
Lai, 2019, A novel TNF-α-targeting aptamer for TNF-α-mediated acute lung injury and acute liver failure, Theranostics, 9, 1741, 10.7150/thno.30972
Yang, 2022, Aptamer blocking S-TLR4 interaction selectively inhibits SARS-CoV-2 induced inflammation, Signal Transduct. Target. Ther., 7, 120, 10.1038/s41392-022-00968-2
Boshtam, 2017, Aptamers against pro- and anti-inflammatory cytokines: a review, Inflammation, 40, 340, 10.1007/s10753-016-0477-1
Vorobyeva, 2016, Aptamers against immunologic targets: diagnostic and therapeutic prospects, Nucleic Acid Ther., 26, 52, 10.1089/nat.2015.0568
Momeni, 2022, Identification of G-quadruplex anti-Interleukin-2 aptamer with high specificity through SELEX stringency, Heliyon, 8, e09721, 10.1016/j.heliyon.2022.e09721
Liu, 2016, The cytokine storm of severe influenza and development of immunomodulatory therapy, Cell. Mol. Immunol., 13, 3, 10.1038/cmi.2015.74
Gao, 2021, Perspectives on SARS-CoV-2 main protease inhibitors, J. Med. Chem., 64, 16922, 10.1021/acs.jmedchem.1c00409
Dai, 2020, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science, 368, 1331, 10.1126/science.abb4489
Morena, 2021, De novo ssRNA aptamers against the SARS-CoV-2 main protease: in silico design and molecular dynamics simulation, Int. J. Mol. Sci., 22, 6874, 10.3390/ijms22136874
Jang, 2008, Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase, Biochem. Biophys. Res. Commun., 366, 738, 10.1016/j.bbrc.2007.12.020
Weisshoff, 2020, Aptamer BC 007 - efficient binder of spreading-crucial SARS-CoV-2 proteins, Heliyon, 6, e05421, 10.1016/j.heliyon.2020.e05421
Haberland, 2021, Aptamer BC 007’s affinity to specific and less-specific anti-SARS-CoV-2 neutralizing antibodies, Viruses, 13, 932, 10.3390/v13050932
Li, 2008, Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety, J. Am. Chem. Soc., 130, 12636, 10.1021/ja801510d
Qin, 2021
Mi, 2010, In vivo selection of tumor-targeting RNA motifs, Nat. Chem. Biol., 6, 22, 10.1038/nchembio.277
Rohloff, 2014, Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents, Mol. Ther. Nucleic Acids, 3, e201, 10.1038/mtna.2014.49
Wang, 2019, Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development, Biotechnol. Adv., 37, 28, 10.1016/j.biotechadv.2018.11.001
Lee, 2022, De novo selected hACE2 mimics that integrate hotspot peptides with aptameric scaffolds for binding tolerance of SARS-CoV-2 variants, Sci. Adv., 8, eabq6207, 10.1126/sciadv.abq6207
Sánchez-Báscones, 2021, Aptamers against viruses: selection strategies and bioanalytical applications, TrAC, Trends Anal. Chem., 143, 116349, 10.1016/j.trac.2021.116349
Duclair, 2015, High-affinity RNA aptamers against the HIV-1 protease inhibit both in vitro protease activity and late events of viral replication, Mol. Ther. Nucleic Acids, 4, e228, 10.1038/mtna.2015.1
Kwon, 2020, Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition, Nat. Chem., 12, 26, 10.1038/s41557-019-0369-8
Sigl, 2021, Programmable icosahedral shell system for virus trapping, Nat. Mater., 20, 1281, 10.1038/s41563-021-01020-4
Monferrer, 2022, Broad-spectrum virus trapping with heparan sulfate-modified DNA origami shells, ACS Nano, 16, 20002, 10.1021/acsnano.1c11328
Zhang, 2022, Spatially patterned neutralizing icosahedral DNA nanocage for efficient SARS-CoV-2 blocking, J. Am. Chem. Soc., 144, 13146, 10.1021/jacs.2c02764
Chauhan, 2022, Net-shaped DNA nanostructures designed for rapid/sensitive detection and potential inhibition of the SARS-CoV-2 virus, J. Am. Chem. Soc.
Wan, 2022, Spatial- and valence-matched neutralizing DNA nanostructure blocks wild-type SARS-CoV-2 and omicron variant infection, ACS Nano, 16, 15310, 10.1021/acsnano.2c06803
Knappe, 2021, In situ covalent functionalization of DNA origami virus-like particles, ACS Nano, 15, 14316, 10.1021/acsnano.1c03158
Veneziano, 2020, Role of nanoscale antigen organization on B-cell activation probed using DNA origami, Nat. Nanotechnol., 15, 716, 10.1038/s41565-020-0719-0
Wamhoff, 2022, Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds, Preprint at bioRxiv
Oktay, 2022, DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response, bioRxiv
Zhang, 2022, Elucidating the effect of nanoscale receptor-binding domain organization on SARS-CoV-2 infection and immunity activation with DNA origami, J. Am. Chem. Soc., 144, 21295, 10.1021/jacs.2c09229
Zeng, 2022, Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro, Nat. Commun., 13, 2766, 10.1038/s41467-022-30546-7
Su, 2021, Efficient inhibition of SARS-CoV-2 using chimeric antisense oligonucleotides through RNase L activation, Angew. Chem. Int. Ed. Engl., 60, 21662, 10.1002/anie.202105942
Baldassi, 2022, Inhibition of SARS-CoV-2 replication in the lung with siRNA/VIPER polyplexes, J. Control. Release, 345, 661, 10.1016/j.jconrel.2022.03.051
Idris, 2021, A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19, Mol. Ther., 29, 2219, 10.1016/j.ymthe.2021.05.004
Gao, 2022, A lysosome-activated tetrahedral nanobox for encapsulated siRNA delivery, Adv. Mater., 34, 2201731, 10.1002/adma.202201731
Khaitov, 2021, Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation, Allergy, 76, 2840, 10.1111/all.14850
Tolksdorf, 2021, Inhibition of SARS-CoV-2 replication by a small interfering RNA targeting the leader sequence, Viruses, 13, 2030, 10.3390/v13102030
Ambike, 2022, Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread, Nucleic Acids Res., 50, 333, 10.1093/nar/gkab1248
Traube, 2022, Suppression of SARS-CoV-2 replication with stabilized and click-chemistry modified siRNAs, Angew. Chem. Int. Ed. Engl., 61, e202204556, 10.1002/anie.202204556
Chang, 2022, A siRNA targets and inhibits a broad range of SARS-CoV-2 infections including Delta variant, EMBO Mol. Med., 14, e15298, 10.15252/emmm.202115298
Hum, 2021, MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19, Drugs, 81, 517, 10.1007/s40265-021-01474-5
Marchi, 2021, The role of microRNAs in modulating SARS-CoV-2 infection in human cells: a systematic review, Infect. Genet. Evol., 91, 104832, 10.1016/j.meegid.2021.104832
Pfafenrot, 2021, Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs, Nucleic Acids Res., 49, 12502, 10.1093/nar/gkab1096
Knott, 2018, CRISPR-Cas guides the future of genetic engineering, Science, 361, 866, 10.1126/science.aat5011
van der Oost, 2014, Unravelling the structural and mechanistic basis of CRISPR–Cas systems, Nat. Rev. Microbiol., 12, 479, 10.1038/nrmicro3279
Abbott, 2020, Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza, Cell, 181, 865, 10.1016/j.cell.2020.04.020
Lin, 2021, A comprehensive analysis and resource to use CRISPR-Cas13 for broad-spectrum targeting of RNA viruses, Cell Rep. Med., 2, 100245, 10.1016/j.xcrm.2021.100245
Haniff, 2020, Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders, ACS Cent. Sci., 6, 1713, 10.1021/acscentsci.0c00984
Dai, 2021, Viral targets for vaccines against COVID-19, Nat. Rev. Immunol., 21, 73, 10.1038/s41577-020-00480-0
Pushparajah, 2021, Advances in gene-based vaccine platforms to address the COVID-19 pandemic, Adv. Drug Deliv. Rev., 170, 113, 10.1016/j.addr.2021.01.003
Dong, 2020, A systematic review of SARS-CoV-2 vaccine candidates, Signal Transduct. Target. Ther., 5, 237, 10.1038/s41392-020-00352-y
Chalkias, 2022, A bivalent omicron-containing booster vaccine against covid-19, N. Engl. J. Med., 387, 1279, 10.1056/NEJMoa2208343
Chalkias, 2022, Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: a phase 2/3 trial, Nat. Med., 28, 2388, 10.1038/s41591-022-02031-7
Chalkias, 2022, Neutralization of omicron subvariant BA.2.75 after bivalent vaccination, N. Engl. J. Med., 387, 2194, 10.1056/NEJMc2212772
Lamers, 2022, SARS-CoV-2 pathogenesis, Nat. Rev. Microbiol., 20, 270, 10.1038/s41579-022-00713-0
Harrison, 2020, Mechanisms of SARS-CoV-2 transmission and pathogenesis, Trends Immunol., 41, 1100, 10.1016/j.it.2020.10.004
Gordon, 2020, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, 583, 459, 10.1038/s41586-020-2286-9
Ke, 2020, Structures and distributions of SARS-CoV-2 spike proteins on intact virions, Nature, 588, 498, 10.1038/s41586-020-2665-2
Watanabe, 2020, Site-specific glycan analysis of the SARS-CoV-2 spike, Science, 369, 330, 10.1126/science.abb9983
Jackson, 2022, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23, 3, 10.1038/s41580-021-00418-x
Moore, 2020, Cytokine release syndrome in severe COVID-19, Science, 368, 473, 10.1126/science.abb8925
Jose, 2020, COVID-19 cytokine storm: the interplay between inflammation and coagulation, Lancet Respir. Med., 8, e46, 10.1016/S2213-2600(20)30216-2
Karki, 2021, Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes, Cell, 184, 149, 10.1016/j.cell.2020.11.025
Li, 2020, Updated approaches against SARS-CoV-2, Antimicrob. Agents Chemother., 64, e00483, 10.1128/AAC.00483-20
Taylor, 2021, Neutralizing monoclonal antibodies for treatment of COVID-19, Nat. Rev. Immunol., 21, 382, 10.1038/s41577-021-00542-x
Westendorf, 2022, LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants, Cell Rep., 39, 110812, 10.1016/j.celrep.2022.110812
Xu, 2020, Effective treatment of severe COVID-19 patients with tocilizumab, Proc. Natl. Acad. Sci. USA, 117, 10970, 10.1073/pnas.2005615117
Lu, 2022, Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants, Virol. Sin., 37, 238, 10.1016/j.virs.2022.02.005
Owen, 2021, An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19, Science, 374, 1586, 10.1126/science.abl4784
Kabinger, 2021, Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis, Nat. Struct. Mol. Biol., 28, 740, 10.1038/s41594-021-00651-0
Brevini, 2022, FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2, Nature, 10.1038/s41586-022-05594-0
Liu, 2020, Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike, Nature, 584, 450, 10.1038/s41586-020-2571-7
Sun, 2022, Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2, Nat. Microbiol., 7, 1063, 10.1038/s41564-022-01155-3
Pinto, 2021, Broad betacoronavirus neutralization by a stem helix-specific human antibody, Science, 373, 1109, 10.1126/science.abj3321
FDA Announces Bebtelovimab Is Not Currently Authorized in Any US Region. (2022). https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-bebtelovimab-not-currently-authorized-any-us-region
Lee, 2020, Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies, Nat. Microbiol., 5, 1185, 10.1038/s41564-020-00789-5
Delany, 2014, Vaccines for the 21st century, EMBO Mol. Med., 6, 708, 10.1002/emmm.201403876
Edghill-Smith, 2005, Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus, Nat. Med., 11, 740, 10.1038/nm1261
Minor, 2015, Live attenuated vaccines: historical successes and current challenges, Virology, 479-480, 379, 10.1016/j.virol.2015.03.032
2020
Sourimant, 2022, 4’-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication, Science, 375, 161, 10.1126/science.abj5508
Dunn, 2017, Analysis of aptamer discovery and technology, Nat. Rev. Chem, 1, 0076, 10.1038/s41570-017-0076
Zhou, 2017, Aptamers as targeted therapeutics: current potential and challenges, Nat. Rev. Drug Discov., 16, 181, 10.1038/nrd.2016.199
Zhang, 2020, Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment, Nat. Protoc., 15, 2728, 10.1038/s41596-020-0355-z
Tian, 2022, Prospects and challenges of dynamic DNA nanostructures in biomedical applications, Bone Res., 10, 40, 10.1038/s41413-022-00212-1
Zhang, 2022, Facilitating in situ tumor imaging with a tetrahedral DNA framework-enhanced hybridization chain reaction probe, Adv. Funct. Mater., 32, 2109728, 10.1002/adfm.202109728
Kacherovsky, 2021, Discovery and characterization of spike N-terminal domain-binding aptamers for rapid SARS-CoV-2 detection, Angew. Chem. Int. Ed. Engl., 60, 21211, 10.1002/anie.202107730
Zhang, 2021, High-affinity dimeric aptamers enable the rapid electrochemical detection of wild-type and B.1.1.7 SARS-CoV-2 in unprocessed saliva, Angew. Chem. Int. Ed. Engl., 60, 24266, 10.1002/anie.202110819
Zhang, 2022, A universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern, Chemistry, 28, e202200078, 10.1002/chem.202200078
Zhang, 2020, Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers, Chem. Commun., 56, 10235, 10.1039/D0CC03993D
Li, 2022, Label-free digital detection of intact virions by enhanced scattering microscopy, J. Am. Chem. Soc., 144, 1498, 10.1021/jacs.1c09579
Li, 2021, Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library, Nucleic Acids Res., 49, 7267, 10.1093/nar/gkab574
Peinetti, 2021, Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors, Sci. Adv., 7, eabh2848, 10.1126/sciadv.abh2848
Abrego-Martinez, 2022, Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy, Biosens. Bioelectron., 195, 113595, 10.1016/j.bios.2021.113595
Gupta, 2021, A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2, Mol. Ther. Nucleic Acids, 26, 321, 10.1016/j.omtn.2021.06.014
Shi, 2021, Aptamer-functionalized nanochannels for one-step detection of SARS-CoV-2 in samples from COVID-19 patients, Anal. Chem., 93, 16646, 10.1021/acs.analchem.1c04156
Deng, 2021, Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay, J. Am. Chem. Soc., 143, 7261, 10.1021/jacs.1c02929
Rizkita, 2021, The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a review, J. Pharm. Anal., 11, 265, 10.1016/j.jpha.2021.03.003
Ghosh, 2020, siRNA could be a potential therapy for COVID-19, EXCLI J., 19, 528
Saw, 2020, siRNA therapeutics: a clinical reality, Sci. China Life Sci., 63, 485, 10.1007/s11427-018-9438-y
Yu, 2019, The emerging roles and functions of circular RNAs and their generation, J. Biomed. Sci., 26, 29, 10.1186/s12929-019-0523-z
Pejchal, 2011, A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield, Science, 334, 1097, 10.1126/science.1213256
Lennemann, 2014, Comprehensive functional analysis of N-linked glycans on ebola virus GP1, mBio, 5, 10.1128/mBio.00862-13
Watanabe, 2018, Structure of the Lassa virus glycan shield provides a model for immunological resistance, Proc. Natl. Acad. Sci. USA, 115, 7320, 10.1073/pnas.1803990115
Gong, 2021, The glycosylation in SARS-CoV-2 and its receptor ACE2, Signal Transduct. Target. Ther., 6, 396, 10.1038/s41392-021-00809-8
Chen, 2014, Role of N-linked glycans in the interactions of recombinant HCV envelope glycoproteins with cellular receptors, ACS Chem. Biol., 9, 1437, 10.1021/cb500121c
Bonomelli, 2011, The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade, PLoS One, 6, e23521, 10.1371/journal.pone.0023521
Horiya, 2014, Recent strategies targeting HIV glycans in vaccine design, Nat. Chem. Biol., 10, 990, 10.1038/nchembio.1685
Tommasone, 2019, The challenges of glycan recognition with natural and artificial receptors, Chem. Soc. Rev., 48, 5488, 10.1039/C8CS00768C
Medzhitov, 2007, Recognition of microorganisms and activation of the immune response, Nature, 449, 819, 10.1038/nature06246
Meng, 2021, Capturing cytokines with advanced materials: a potential strategy to tackle COVID-19 cytokine storm, Adv. Mater., 33, 2100012, 10.1002/adma.202100012