Functional nanocomposites for energy storage: chemistry and new horizons
Tài liệu tham khảo
Ho, 2014, A review of metal oxide composite electrode materials for electrochemical capacitors, Nano, 9, 1, 10.1142/S1793292014300023
Yang, 2019, Perovskite lead-free dielectrics for energy storage applications, Prog. Mater. Sci., 102, 72, 10.1016/j.pmatsci.2018.12.005
Thakur, 2012, Green aqueous modification of fluoropolymers for energy storage applications, J. Mater. Chem., 22, 5951, 10.1039/c2jm15665b
V. Kumar, A. Kumar, R. R. Wu, and D. J. Lee, “Room-temperature vulcanized silicone rubber/barium titanate–based high-performance nanocomposite for energy harvesting,” Mater. Today Chem., vol. 16, 2020, doi: 10.1016/j.mtchem.2019.100232.
Li, 2018, High-temperature dielectric materials for electrical energy storage, Annu. Rev. Mater. Res., 48, 219, 10.1146/annurev-matsci-070317-124435
Prateek, 2016, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects, Chem. Rev., 116, 4260, 10.1021/acs.chemrev.5b00495
Kim, 2009, High energy density nanocomposites based on surface-modified BaTiO3 and ferroelectric polymer, ACS Nano, 3, 2581, 10.1021/nn9006412
Dou, 2009, Improved dielectric strength of barium titanate-polyvinylidene fluoride nanocomposite, Appl. Phys. Lett., 95, 10.1063/1.3242004
Dang, 2006, Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites, Appl. Phys. Lett., 89, 87, 10.1063/1.2338529
Thakur, 2011, Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors, J. Mater. Chem., 21, 3751, 10.1039/c0jm02408b
Thakur, 2011, Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance, Polym. Chem., 2, 2000, 10.1039/c1py00225b
Lin, 2011, Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite, RSC Adv., 1, 576, 10.1039/c1ra00210d
Yang, 2015, Polymer nanocomposites for energy storage, energy saving, and anticorrosion, J. Mater. Chem., 3, 14929, 10.1039/C5TA02707A
Zhang, 1998, Giant electrostriction and relaxor ferroelectric behavior in electron- irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer, Science, 280, 2101, 10.1126/science.280.5372.2101
Das, 2020, Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: effect of TiO2 and ZnO nanoparticles on electrochemical behavior, J. Appl. Polym. Sci., 137, 23, 10.1002/app.48757
Guo, 2019, High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency, Mater. Today, 29, 49, 10.1016/j.mattod.2019.04.015
Ezeigwe, 2015, One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors, Ceram. Int., 41, 715, 10.1016/j.ceramint.2014.08.128
Wu, 2012, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 1, 107, 10.1016/j.nanoen.2011.11.001
Choi, 2012, Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy, 1, 534, 10.1016/j.nanoen.2012.05.001
Saravanakumar, 2013, Facile synthesis of graphene/ZnO nanocomposites by low temperature hydrothermal method, Mater. Res. Bull., 48, 878, 10.1016/j.materresbull.2012.11.048
Han, 2014, Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities, ACS Sustain. Chem. Eng., 2, 741, 10.1021/sc400417u
Kuo, 2001, Dielectric behaviours of multi-doped BaTiO3/epoxy composites, J. Eur. Ceram. Soc., 21, 1171, 10.1016/S0955-2219(00)00327-7
Reed, 1994, The fundamentals of aging in HV polymer-film capacitors, IEEE Trans. Dielectr. Electr. Insul., 1, 904, 10.1109/94.326658
Chu, 2006, A Dielectric Polymer with high electric energy density and fast discharge speed, Science., 313, 334, 10.1126/science.1127798
Omri, 2016, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles, Ceram. Int., 42, 8940, 10.1016/j.ceramint.2016.02.151
Gilliot, 2015, Dielectric function of very thin nano-granular ZnO layers with different states of growth, Appl. Optic., 54, 3043, 10.1364/AO.54.003043
Brousse, 2003, A hybrid FeO-MnO capacitor in mild aqueous electrolyte, Electrochem. Solid State Lett., 6, A244, 10.1149/1.1614451
Simon, 2010, Materials for electrochemical capacitors, Mater. Sustain. Energy A Collect. Peer-Reviewed Res. Rev. Artic. from Nat. Publ. Gr., 138
Yuan, 2005, Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide, Carbon N. Y., 43, 2913, 10.1016/j.carbon.2005.06.027
Wang, 2009, Manganese dioxide-carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors, Scr. Mater., 61, 1079, 10.1016/j.scriptamat.2009.08.040
Liu, 2014, One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors, Ceram. Int., 40, 8189, 10.1016/j.ceramint.2014.01.015
Fan, 2005, Zinc oxide nanostructures: synthesis and properties, J. Nanosci. Nanotechnol., 5, 1561, 10.1166/jnn.2005.182
Zhu, 2006, Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching, Adv. Mater., 18, 587, 10.1002/adma.200501918
Johra, 2013, Solution-based fabrication of a graphene-ZnO nanocomposite, J. Sol-Gel Sci. Technol., 66, 481, 10.1007/s10971-013-3035-4
Kinoshita, 1976, Grain-size effects on dielectric properties in barium titanate ceramics, J. Appl. Phys., 47, 371, 10.1063/1.322330
Buessem, 1966, Phenomenological theory of high permittivity in fine grained barium titanate, A.C. Society., 49
Zemouli, 2015, Design of a compact and high sensitivity temperature sensor using metamaterial, Int. J. Antennas Propag., 2015
Hwang, 2005, Curie temperature anomaly in lead zirconate titanate/silver composites, J. Am. Ceram. Soc., 81, 709, 10.1111/j.1151-2916.1998.tb02394.x
Hiroshima, 1996, Effects of microstructure and composition on the curie temperature of lead barium niobate solid solutions, J. Am. Ceram. Soc., 79, 3235, 10.1111/j.1151-2916.1996.tb08100.x
Kanai, 1993, Effect of stoichiometry on the dielectric properties and life performance of (Pb0.875Ba0.125) [(Mg1/3Nb2/3)0.5 Zn1/3Nb2/3)0.3 Ti0.2]O3 relaxor dielectric ceramic: Part I, dielectri. Properties,, J. Am. Ceram. Soc., 76, 454, 10.1111/j.1151-2916.1993.tb03806.x
Ducharme, 2009, An inside-out approach to storing electrostatic energy, ACS Nano, 3, 2447, 10.1021/nn901078s
Kerner, 1956, The electrical conductivity of composite media, Proc. Phys. Soc. Sect. B, 69, 802, 10.1088/0370-1301/69/8/304
Aspnes, 1998, Local field effects and effective medium theory: a microscopic perspective, Am. J. Phys., 704, 28
Jayasundere, 1998, Dielectric constant for binary piezoelectric 0-3 composites, J. Appl. Phys., 73
Du, 2009, DC-AC cascaded H-bridge multilevel boost inverter with no inductors for electric/hybrid electric vehicle applications, IEEE Trans. Ind. Appl., 45, 963, 10.1109/TIA.2009.2018978
Whittingham, 2008, Materials challenges facing electrical energy storage, MRS Bull., 33, 411, 10.1557/mrs2008.82
Yang, 2016, Three dimensional printing of high dielectric capacitor using projection based stereolithography method, Nano Energy, 22, 414, 10.1016/j.nanoen.2016.02.045
Kim, 2014, 3D optical printing of piezoelectric nanoparticle-polymer composite materials, ACS Nano, 8, 9799, 10.1021/nn503268f
Gonzalez, 2018, 3-D printing of dielectric electroactive polymer actuators and characterization of dielectric flexible materials, ASME 2018 Conf. Smart Mater. Adapt. Struct. Intell. Syst, 2, 1
Williams, 2012, Physical principles of defibrillators, Anaesth. Intensive Care Med., 13, 384, 10.1016/j.mpaic.2012.05.011
Shen, 2017, Polymer nanocomposite dielectric for electrical energy storage, Natl. Sci. Rev., 4, 23, 10.1093/nsr/nww066
Shen, 2015, Polymer nanocomposites with high energy storage densities, MRS Bull., 40, 753, 10.1557/mrs.2015.199
Huang, 2004, Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites, Adv. Funct. Mater., 14, 501, 10.1002/adfm.200305021
Rao, 2004, Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications, J. Appl. Polym. Sci., 92, 2228, 10.1002/app.13690
Mikeska, 1988, Non-aqueous dispersion properties of pure barium titanate for tape casting, Colloid. Surface., 29, 305, 10.1016/0166-6622(88)80125-2
Kim, 2007, Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength, Adv. Mater., 19, 1001, 10.1002/adma.200602422
Li, 2008, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles, Chem. Mater., 20, 6304, 10.1021/cm8021648
Dang, 2008, Effect of BaTiO3 size on dielectric property of BaTiO 3/PVDF composites, J. Electroceram., 21, 381, 10.1007/s10832-007-9201-8
Hong, 2009, Synthesis, surface modification and photocatalytic property of ZnO nanoparticles, Powder Technol., 189, 426, 10.1016/j.powtec.2008.07.004
Song, 2012, Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO 3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites, J. Mater. Chem., 22, 8063, 10.1039/c2jm30297g
Jiang, 2011, High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires, Energy Environ. Sci., 4, 1813, 10.1039/c1ee01032h
Lee, 2007, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318, 426, 10.1126/science.1147241
Wang, 2018, High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticles, J. Mater., 4, 44
Lin, 2011, Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors, J. Mater. Chem., 21, 16500, 10.1039/c1jm12429c
Xia, 2020, Modeling the dielectric breakdown strength and energy storage density of graphite-polymer composites with dielectric damage process, Mater. Des., 189, 108531, 10.1016/j.matdes.2020.108531
Zhu, 2012, Novel ferroelectric polymers for high energy density and low loss dielectrics, Macromolecules, 45, 2937, 10.1021/ma2024057
Addonizio, 2014, Sol-gel synthesis of ZnO transparent conductive films: the role of pH, Appl. Surf. Sci., 305, 194, 10.1016/j.apsusc.2014.03.037
Yin, 2016, Effects of interphase modification and biaxial orientation on dielectric properties of poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) multilayer films, ACS Appl. Mater. Interfaces, 8, 13555, 10.1021/acsami.6b01287
Walsby, 2001, “Radiation-Grafted ion-exchange. Membranes : influence of the initial matrix on the synthesis and structure, J. Poly.Sci., 39, 3008, 10.1002/pola.1281
Brack, 2000, Grafting of pre-irradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: influence of base polymer film properteis and processing parameters, J. Mater. Chem., 10, 1795, 10.1039/b001851l
Hietala, 1999, Structure of styrene grafted poly(vinylidene fluoride) membranes investigated by solid-state NMR, Macromolecules, 32, 788, 10.1021/ma981543k
Eberle, 1993, Influence of poling conditions on the gas emission of PVDF, Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenom., 263
Ponting, 2010, Polymer nanostructures by forced assembly: process, structure, and properties, Macromol. Symp., 294, 19, 10.1002/masy.201050803
Bai, 2000, High-dielectric-constant ceramic-powder polymer composites, Appl. Phys. Lett., 76, 3804, 10.1063/1.126787
Jiang, 2007, “Synthesis of BaTiO3. nanowires at low temperature,” Cryst, Growth Des, 7, 2713, 10.1021/cg0607607
Wang, 2006, A general approach to porous crystalline TiO2, SrTiO 3, and BaTiO3 spheres, J. Phys. Chem. B, 110, 13835, 10.1021/jp061597t
Su, 2007, Open-bench method for the preparation of BaTiO 3, SrTiO 3, and Ba xSr 1-xTiO 3 nanocrystals at 80 °C, Langmuir, 23, 11369, 10.1021/la701877d
Joshi, 2005, Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires, Small, 1, 1172, 10.1002/smll.200500055
Deng, 2010, Synthesis and characterization of bowl-like single-crystalline BaTiO 3 nanoparticles, Nanoscale Res. Lett., 5, 1217, 10.1007/s11671-010-9629-7
Koebel, 2012, Transparent, conducting ATO thin films by epoxide-initiated solgel chemistry: a highly versatile route to mixed-metal oxide films, ACS Appl. Mater. Interfaces, 4, 2464, 10.1021/am300143z
Spanhel, 2006, Colloidal ZnO nanostructures and functional coatings: a survey, J. Sol-Gel Sci. Technol., 39, 7, 10.1007/s10971-006-7302-5
Znaidi, 2010, Sol-gel-deposited ZnO thin films: a review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 174, 18, 10.1016/j.mseb.2010.07.001
Tari, 2012, Sol-gel synthesis of ZnO transparent and conductive films: a critical approach, Sol. Energy Mater. Sol. Cells, 105, 179, 10.1016/j.solmat.2012.06.016
Sagar, 2007, Influence of pH value on the quality of sol-gel derived ZnO films, Appl. Surf. Sci., 253, 5419, 10.1016/j.apsusc.2006.12.026
Houng, 2007, Effect of the pH on the growth and properties of sol-gel derived boron-doped ZnO transparent conducting thin film, J. Cryst. Growth, 307, 328, 10.1016/j.jcrysgro.2007.07.001
Ilican, 2011, The role of pH and boron doping on the characteristics of sol gel derived ZnO films, J. Alloys Compd., 509, 5290, 10.1016/j.jallcom.2011.01.122
Wang, 2013, Low-temperature synthesis of BaTiO3 powders by the sol-gel-hydrothermal method, Ceram. Int., 39, 7127, 10.1016/j.ceramint.2013.02.055
Robertz, 2001, Importance of soft solution processing for advanced BaZrO3 materials, Int. J. Inorg. Mater., 3, 1185, 10.1016/S1466-6049(01)00122-2
Zhang, 2003, Synthesis of cadmium titanate powders by a sol-gel-hydrothermal method, J. Mater. Sci., 38, 2353, 10.1023/A:1023932513481
Chang, 2010, Formation mechanism of zirconia nano-particles containing pores prepared via sol-gel-hydrothermal method, Adv. Powder Technol., 21, 425, 10.1016/j.apt.2009.11.003
Chen, 2011, Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol-gel-hydrothermal method, Ceram. Int., 37, 2359, 10.1016/j.ceramint.2011.03.081
Hou, 2006, Sol-gel-hydrothermal synthesis and sintering of K0.5Bi0.5TiO3 nanowires, Mater. Res. Bull., 41, 1330, 10.1016/j.materresbull.2005.12.010
Yu, 2009, Preparation of nanosized CoAl2O4 powders by sol-gel and sol-gel-hydrothermal methods, J. Alloys Compd., 468, 443, 10.1016/j.jallcom.2008.01.018
Hou, 2011, Lead-free Bi-based complex perovskite nanowires: sol-gelhydrothermal processing and the densification behavior, J. Electroceram., 26, 37, 10.1007/s10832-010-9625-4
Liu, 2016, Effects of oxygen partial pressure on the structural and optical properties of undoped and Cu-doped ZnO thin films prepared by magnetron co-sputtering, Mater. Lett., 164, 509, 10.1016/j.matlet.2015.11.038
Ali, 2014, Influence of substrate temperature on structural, optical properties and dielectric results of nano- ZnO thin films prepared by Radio Frequency technique, Superlattices Microstruct, 65, 285, 10.1016/j.spmi.2013.11.007
Pathak, 2016, Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique, Phys. E Low-Dimensional Syst. Nanostructures, 77, 1, 10.1016/j.physe.2015.11.001
Mortezaali, 2016, Thickness effect of nanostructured ZnO thin films prepared by spray method on structural, morphological and optical properties, Microelectron. Eng., 151, 19, 10.1016/j.mee.2015.11.016
Mao, 2003, Hydrothermal synthesis of perovskite nanotubes, Chem. Commun., 9, 408, 10.1039/b210633g
El Mel, 2015, The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes, Beilstein J. Nanotechnol., 6, 1348, 10.3762/bjnano.6.139
Huang, 2019, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications, Prog. Mater. Sci., 100, 187, 10.1016/j.pmatsci.2018.10.003
Rahimabady, 2013, “Dielectric behaviors and high energy storage density of nanocomposites with core–shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene), Phys. Chem. Chem. Phys., 15, 16242, 10.1039/c3cp52267a
Bi, 2018, Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density, Nano Energy, 51, 513, 10.1016/j.nanoen.2018.07.006
Luo, 2019, Interface design for high energy density polymer nanocomposites, Chem. Soc. Rev., 48, 4424, 10.1039/C9CS00043G
Calame, 2006, Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications, J. Appl. Phys., 99, 10.1063/1.2188032
Ates, 2020, Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources, Chemical Reviews, 10.1021/acs.chemrev.9b00553