Functional nanocomposites for energy storage: chemistry and new horizons

Materials Today Chemistry - Tập 17 - Trang 100304 - 2020
S. Chen1, A. Skordos1, V.K. Thakur1,2,3
1Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire, MK43 0AL, UK
2Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
3Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India

Tài liệu tham khảo

Ho, 2014, A review of metal oxide composite electrode materials for electrochemical capacitors, Nano, 9, 1, 10.1142/S1793292014300023 Yang, 2019, Perovskite lead-free dielectrics for energy storage applications, Prog. Mater. Sci., 102, 72, 10.1016/j.pmatsci.2018.12.005 Thakur, 2012, Green aqueous modification of fluoropolymers for energy storage applications, J. Mater. Chem., 22, 5951, 10.1039/c2jm15665b V. Kumar, A. Kumar, R. R. Wu, and D. J. Lee, “Room-temperature vulcanized silicone rubber/barium titanate–based high-performance nanocomposite for energy harvesting,” Mater. Today Chem., vol. 16, 2020, doi: 10.1016/j.mtchem.2019.100232. Li, 2018, High-temperature dielectric materials for electrical energy storage, Annu. Rev. Mater. Res., 48, 219, 10.1146/annurev-matsci-070317-124435 Prateek, 2016, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects, Chem. Rev., 116, 4260, 10.1021/acs.chemrev.5b00495 Kim, 2009, High energy density nanocomposites based on surface-modified BaTiO3 and ferroelectric polymer, ACS Nano, 3, 2581, 10.1021/nn9006412 Dou, 2009, Improved dielectric strength of barium titanate-polyvinylidene fluoride nanocomposite, Appl. Phys. Lett., 95, 10.1063/1.3242004 Dang, 2006, Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites, Appl. Phys. Lett., 89, 87, 10.1063/1.2338529 Thakur, 2011, Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors, J. Mater. Chem., 21, 3751, 10.1039/c0jm02408b Thakur, 2011, Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance, Polym. Chem., 2, 2000, 10.1039/c1py00225b Lin, 2011, Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite, RSC Adv., 1, 576, 10.1039/c1ra00210d Yang, 2015, Polymer nanocomposites for energy storage, energy saving, and anticorrosion, J. Mater. Chem., 3, 14929, 10.1039/C5TA02707A Zhang, 1998, Giant electrostriction and relaxor ferroelectric behavior in electron- irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer, Science, 280, 2101, 10.1126/science.280.5372.2101 Das, 2020, Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: effect of TiO2 and ZnO nanoparticles on electrochemical behavior, J. Appl. Polym. Sci., 137, 23, 10.1002/app.48757 Guo, 2019, High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency, Mater. Today, 29, 49, 10.1016/j.mattod.2019.04.015 Ezeigwe, 2015, One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors, Ceram. Int., 41, 715, 10.1016/j.ceramint.2014.08.128 Wu, 2012, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 1, 107, 10.1016/j.nanoen.2011.11.001 Choi, 2012, Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy, 1, 534, 10.1016/j.nanoen.2012.05.001 Saravanakumar, 2013, Facile synthesis of graphene/ZnO nanocomposites by low temperature hydrothermal method, Mater. Res. Bull., 48, 878, 10.1016/j.materresbull.2012.11.048 Han, 2014, Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities, ACS Sustain. Chem. Eng., 2, 741, 10.1021/sc400417u Kuo, 2001, Dielectric behaviours of multi-doped BaTiO3/epoxy composites, J. Eur. Ceram. Soc., 21, 1171, 10.1016/S0955-2219(00)00327-7 Reed, 1994, The fundamentals of aging in HV polymer-film capacitors, IEEE Trans. Dielectr. Electr. Insul., 1, 904, 10.1109/94.326658 Chu, 2006, A Dielectric Polymer with high electric energy density and fast discharge speed, Science., 313, 334, 10.1126/science.1127798 Omri, 2016, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles, Ceram. Int., 42, 8940, 10.1016/j.ceramint.2016.02.151 Gilliot, 2015, Dielectric function of very thin nano-granular ZnO layers with different states of growth, Appl. Optic., 54, 3043, 10.1364/AO.54.003043 Brousse, 2003, A hybrid FeO-MnO capacitor in mild aqueous electrolyte, Electrochem. Solid State Lett., 6, A244, 10.1149/1.1614451 Simon, 2010, Materials for electrochemical capacitors, Mater. Sustain. Energy A Collect. Peer-Reviewed Res. Rev. Artic. from Nat. Publ. Gr., 138 Yuan, 2005, Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide, Carbon N. Y., 43, 2913, 10.1016/j.carbon.2005.06.027 Wang, 2009, Manganese dioxide-carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors, Scr. Mater., 61, 1079, 10.1016/j.scriptamat.2009.08.040 Liu, 2014, One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors, Ceram. Int., 40, 8189, 10.1016/j.ceramint.2014.01.015 Fan, 2005, Zinc oxide nanostructures: synthesis and properties, J. Nanosci. Nanotechnol., 5, 1561, 10.1166/jnn.2005.182 Zhu, 2006, Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching, Adv. Mater., 18, 587, 10.1002/adma.200501918 Johra, 2013, Solution-based fabrication of a graphene-ZnO nanocomposite, J. Sol-Gel Sci. Technol., 66, 481, 10.1007/s10971-013-3035-4 Kinoshita, 1976, Grain-size effects on dielectric properties in barium titanate ceramics, J. Appl. Phys., 47, 371, 10.1063/1.322330 Buessem, 1966, Phenomenological theory of high permittivity in fine grained barium titanate, A.C. Society., 49 Zemouli, 2015, Design of a compact and high sensitivity temperature sensor using metamaterial, Int. J. Antennas Propag., 2015 Hwang, 2005, Curie temperature anomaly in lead zirconate titanate/silver composites, J. Am. Ceram. Soc., 81, 709, 10.1111/j.1151-2916.1998.tb02394.x Hiroshima, 1996, Effects of microstructure and composition on the curie temperature of lead barium niobate solid solutions, J. Am. Ceram. Soc., 79, 3235, 10.1111/j.1151-2916.1996.tb08100.x Kanai, 1993, Effect of stoichiometry on the dielectric properties and life performance of (Pb0.875Ba0.125) [(Mg1/3Nb2/3)0.5 Zn1/3Nb2/3)0.3 Ti0.2]O3 relaxor dielectric ceramic: Part I, dielectri. Properties,, J. Am. Ceram. Soc., 76, 454, 10.1111/j.1151-2916.1993.tb03806.x Ducharme, 2009, An inside-out approach to storing electrostatic energy, ACS Nano, 3, 2447, 10.1021/nn901078s Kerner, 1956, The electrical conductivity of composite media, Proc. Phys. Soc. Sect. B, 69, 802, 10.1088/0370-1301/69/8/304 Aspnes, 1998, Local field effects and effective medium theory: a microscopic perspective, Am. J. Phys., 704, 28 Jayasundere, 1998, Dielectric constant for binary piezoelectric 0-3 composites, J. Appl. Phys., 73 Du, 2009, DC-AC cascaded H-bridge multilevel boost inverter with no inductors for electric/hybrid electric vehicle applications, IEEE Trans. Ind. Appl., 45, 963, 10.1109/TIA.2009.2018978 Whittingham, 2008, Materials challenges facing electrical energy storage, MRS Bull., 33, 411, 10.1557/mrs2008.82 Yang, 2016, Three dimensional printing of high dielectric capacitor using projection based stereolithography method, Nano Energy, 22, 414, 10.1016/j.nanoen.2016.02.045 Kim, 2014, 3D optical printing of piezoelectric nanoparticle-polymer composite materials, ACS Nano, 8, 9799, 10.1021/nn503268f Gonzalez, 2018, 3-D printing of dielectric electroactive polymer actuators and characterization of dielectric flexible materials, ASME 2018 Conf. Smart Mater. Adapt. Struct. Intell. Syst, 2, 1 Williams, 2012, Physical principles of defibrillators, Anaesth. Intensive Care Med., 13, 384, 10.1016/j.mpaic.2012.05.011 Shen, 2017, Polymer nanocomposite dielectric for electrical energy storage, Natl. Sci. Rev., 4, 23, 10.1093/nsr/nww066 Shen, 2015, Polymer nanocomposites with high energy storage densities, MRS Bull., 40, 753, 10.1557/mrs.2015.199 Huang, 2004, Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites, Adv. Funct. Mater., 14, 501, 10.1002/adfm.200305021 Rao, 2004, Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications, J. Appl. Polym. Sci., 92, 2228, 10.1002/app.13690 Mikeska, 1988, Non-aqueous dispersion properties of pure barium titanate for tape casting, Colloid. Surface., 29, 305, 10.1016/0166-6622(88)80125-2 Kim, 2007, Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength, Adv. Mater., 19, 1001, 10.1002/adma.200602422 Li, 2008, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles, Chem. Mater., 20, 6304, 10.1021/cm8021648 Dang, 2008, Effect of BaTiO3 size on dielectric property of BaTiO 3/PVDF composites, J. Electroceram., 21, 381, 10.1007/s10832-007-9201-8 Hong, 2009, Synthesis, surface modification and photocatalytic property of ZnO nanoparticles, Powder Technol., 189, 426, 10.1016/j.powtec.2008.07.004 Song, 2012, Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO 3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites, J. Mater. Chem., 22, 8063, 10.1039/c2jm30297g Jiang, 2011, High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires, Energy Environ. Sci., 4, 1813, 10.1039/c1ee01032h Lee, 2007, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318, 426, 10.1126/science.1147241 Wang, 2018, High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticles, J. Mater., 4, 44 Lin, 2011, Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors, J. Mater. Chem., 21, 16500, 10.1039/c1jm12429c Xia, 2020, Modeling the dielectric breakdown strength and energy storage density of graphite-polymer composites with dielectric damage process, Mater. Des., 189, 108531, 10.1016/j.matdes.2020.108531 Zhu, 2012, Novel ferroelectric polymers for high energy density and low loss dielectrics, Macromolecules, 45, 2937, 10.1021/ma2024057 Addonizio, 2014, Sol-gel synthesis of ZnO transparent conductive films: the role of pH, Appl. Surf. Sci., 305, 194, 10.1016/j.apsusc.2014.03.037 Yin, 2016, Effects of interphase modification and biaxial orientation on dielectric properties of poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) multilayer films, ACS Appl. Mater. Interfaces, 8, 13555, 10.1021/acsami.6b01287 Walsby, 2001, “Radiation-Grafted ion-exchange. Membranes : influence of the initial matrix on the synthesis and structure, J. Poly.Sci., 39, 3008, 10.1002/pola.1281 Brack, 2000, Grafting of pre-irradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: influence of base polymer film properteis and processing parameters, J. Mater. Chem., 10, 1795, 10.1039/b001851l Hietala, 1999, Structure of styrene grafted poly(vinylidene fluoride) membranes investigated by solid-state NMR, Macromolecules, 32, 788, 10.1021/ma981543k Eberle, 1993, Influence of poling conditions on the gas emission of PVDF, Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenom., 263 Ponting, 2010, Polymer nanostructures by forced assembly: process, structure, and properties, Macromol. Symp., 294, 19, 10.1002/masy.201050803 Bai, 2000, High-dielectric-constant ceramic-powder polymer composites, Appl. Phys. Lett., 76, 3804, 10.1063/1.126787 Jiang, 2007, “Synthesis of BaTiO3. nanowires at low temperature,” Cryst, Growth Des, 7, 2713, 10.1021/cg0607607 Wang, 2006, A general approach to porous crystalline TiO2, SrTiO 3, and BaTiO3 spheres, J. Phys. Chem. B, 110, 13835, 10.1021/jp061597t Su, 2007, Open-bench method for the preparation of BaTiO 3, SrTiO 3, and Ba xSr 1-xTiO 3 nanocrystals at 80 °C, Langmuir, 23, 11369, 10.1021/la701877d Joshi, 2005, Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires, Small, 1, 1172, 10.1002/smll.200500055 Deng, 2010, Synthesis and characterization of bowl-like single-crystalline BaTiO 3 nanoparticles, Nanoscale Res. Lett., 5, 1217, 10.1007/s11671-010-9629-7 Koebel, 2012, Transparent, conducting ATO thin films by epoxide-initiated solgel chemistry: a highly versatile route to mixed-metal oxide films, ACS Appl. Mater. Interfaces, 4, 2464, 10.1021/am300143z Spanhel, 2006, Colloidal ZnO nanostructures and functional coatings: a survey, J. Sol-Gel Sci. Technol., 39, 7, 10.1007/s10971-006-7302-5 Znaidi, 2010, Sol-gel-deposited ZnO thin films: a review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 174, 18, 10.1016/j.mseb.2010.07.001 Tari, 2012, Sol-gel synthesis of ZnO transparent and conductive films: a critical approach, Sol. Energy Mater. Sol. Cells, 105, 179, 10.1016/j.solmat.2012.06.016 Sagar, 2007, Influence of pH value on the quality of sol-gel derived ZnO films, Appl. Surf. Sci., 253, 5419, 10.1016/j.apsusc.2006.12.026 Houng, 2007, Effect of the pH on the growth and properties of sol-gel derived boron-doped ZnO transparent conducting thin film, J. Cryst. Growth, 307, 328, 10.1016/j.jcrysgro.2007.07.001 Ilican, 2011, The role of pH and boron doping on the characteristics of sol gel derived ZnO films, J. Alloys Compd., 509, 5290, 10.1016/j.jallcom.2011.01.122 Wang, 2013, Low-temperature synthesis of BaTiO3 powders by the sol-gel-hydrothermal method, Ceram. Int., 39, 7127, 10.1016/j.ceramint.2013.02.055 Robertz, 2001, Importance of soft solution processing for advanced BaZrO3 materials, Int. J. Inorg. Mater., 3, 1185, 10.1016/S1466-6049(01)00122-2 Zhang, 2003, Synthesis of cadmium titanate powders by a sol-gel-hydrothermal method, J. Mater. Sci., 38, 2353, 10.1023/A:1023932513481 Chang, 2010, Formation mechanism of zirconia nano-particles containing pores prepared via sol-gel-hydrothermal method, Adv. Powder Technol., 21, 425, 10.1016/j.apt.2009.11.003 Chen, 2011, Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol-gel-hydrothermal method, Ceram. Int., 37, 2359, 10.1016/j.ceramint.2011.03.081 Hou, 2006, Sol-gel-hydrothermal synthesis and sintering of K0.5Bi0.5TiO3 nanowires, Mater. Res. Bull., 41, 1330, 10.1016/j.materresbull.2005.12.010 Yu, 2009, Preparation of nanosized CoAl2O4 powders by sol-gel and sol-gel-hydrothermal methods, J. Alloys Compd., 468, 443, 10.1016/j.jallcom.2008.01.018 Hou, 2011, Lead-free Bi-based complex perovskite nanowires: sol-gelhydrothermal processing and the densification behavior, J. Electroceram., 26, 37, 10.1007/s10832-010-9625-4 Liu, 2016, Effects of oxygen partial pressure on the structural and optical properties of undoped and Cu-doped ZnO thin films prepared by magnetron co-sputtering, Mater. Lett., 164, 509, 10.1016/j.matlet.2015.11.038 Ali, 2014, Influence of substrate temperature on structural, optical properties and dielectric results of nano- ZnO thin films prepared by Radio Frequency technique, Superlattices Microstruct, 65, 285, 10.1016/j.spmi.2013.11.007 Pathak, 2016, Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique, Phys. E Low-Dimensional Syst. Nanostructures, 77, 1, 10.1016/j.physe.2015.11.001 Mortezaali, 2016, Thickness effect of nanostructured ZnO thin films prepared by spray method on structural, morphological and optical properties, Microelectron. Eng., 151, 19, 10.1016/j.mee.2015.11.016 Mao, 2003, Hydrothermal synthesis of perovskite nanotubes, Chem. Commun., 9, 408, 10.1039/b210633g El Mel, 2015, The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes, Beilstein J. Nanotechnol., 6, 1348, 10.3762/bjnano.6.139 Huang, 2019, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications, Prog. Mater. Sci., 100, 187, 10.1016/j.pmatsci.2018.10.003 Rahimabady, 2013, “Dielectric behaviors and high energy storage density of nanocomposites with core–shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene), Phys. Chem. Chem. Phys., 15, 16242, 10.1039/c3cp52267a Bi, 2018, Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density, Nano Energy, 51, 513, 10.1016/j.nanoen.2018.07.006 Luo, 2019, Interface design for high energy density polymer nanocomposites, Chem. Soc. Rev., 48, 4424, 10.1039/C9CS00043G Calame, 2006, Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications, J. Appl. Phys., 99, 10.1063/1.2188032 Ates, 2020, Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources, Chemical Reviews, 10.1021/acs.chemrev.9b00553