Functional knee assessment with advanced imaging

Current Reviews in Musculoskeletal Medicine - Tập 9 - Trang 123-129 - 2016
Keiko Amano1, Qi Li1,2, C. Benjamin Ma1
1Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, USA
2West China Hospital, Orthopaedic Department, Sichuan University, Sichuan Province, China

Tóm tắt

The purpose of anterior cruciate ligament (ACL) reconstruction is to restore the native stability of the knee joint and to prevent further injury to meniscus and cartilage, yet studies have suggested that joint laxity remains prevalent in varying degrees after ACL reconstruction. Imaging can provide measurements of translational and rotational motions of the tibiofemoral joint that may be too small to detect in routine physical examinations. Various imaging modalities, including fluoroscopy, computed tomography (CT), and magnetic resonance imaging (MRI), have emerged as powerful methods in measuring the minute details involved in joint biomechanics. While each technique has its own strengths and limitations, they have all enhanced our understanding of the knee joint under various stresses and movements. Acquiring the knowledge of the complex and dynamic motions of the knee after surgery would help lead to improved surgical techniques and better patient outcomes.

Tài liệu tham khảo

Musahl V, Kopf S, Rabuck S, et al. Rotatory knee laxity tests and the pivot shift as tools for ACL treatment algorithm. Knee Surg Sport Traumatol Arthrosc. 2012;20(4):793–800. doi:10.1007/s00167-011-1857-6. Tsoukas D, Fotopoulos V, Basdekis G, Makridis KG. No difference in osteoarthritis after surgical and non-surgical treatment of ACL-injured knees after 10 years. Knee Surg Sport Traumatol Arthrosc. 2015;(3). doi:10.1007/s00167-015-3593-9. Ramski DE, Kanj WW, Franklin CC, Baldwin KD, Ganley TJ. Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sports Med. 2013:1–8. doi:10.1177/0363546513510889. Chalmers PN, Mall NA, Moric M. Does ACL reconstruction alter natural history? a systematic literature review of long-term outcomes. J Bone Jt Surg. 2014;96(4):292–300. doi:10.2106/JBJS.L.01713. Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. Curr Rheumatol Rep. 2014;16(10):448. doi:10.1007/s11926-014-0448-1. Smith TO, Postle K, Penny F, McNamara I, Mann CJV. Is reconstruction the best management strategy for anterior cruciate ligament rupture? a systematic review and meta-analysis comparing anterior cruciate ligament reconstruction versus non-operative treatment. Knee. 2014;21(2):462–70. doi:10.1016/j.knee.2013.10.009. Musahl V, Seil R, Zaffagnini S, Tashman S, Karlsson J. The role of static and dynamic rotatory laxity testing in evaluating ACL injury. Knee Surg Sport Traumatol Arthrosc. 2012;20(4):603–12. doi:10.1007/s00167-011-1830-4. Kocher MS. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32(3):629–34. doi:10.1177/0363546503261722. Sernert N, Kartus J, Köhler K, Ejerhed L, Karlsson J. Evaluation of the reproducibility of the KT-1000 arthrometer. Scand J Med Sci Sports. 2001;11(2):120–5. http://www.ncbi.nlm.nih.gov/pubmed/11252461. Accessed March 2, 2016. James EW, Williams BT, LaPrade RF. Stress radiography for the diagnosis of knee ligament injuries: a systematic review. Clin Orthop Relat Res. 2014;472(9):2644–57. doi:10.1007/s11999-014-3470-8. Beldame J, Mouchel S, Bertiaux S, et al. Anterior knee laxity measurement: comparison of passive stress radiographs Telos® and “Lerat”, and GNRB® arthrometer. Orthop Traumatol Surg Res. 2012;98(7):744–50. doi:10.1016/j.otsr.2012.05.017. Li G, Van de Velde SK, Bingham JT. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech. 2008;41(7):1616–22. doi:10.1016/j.jbiomech.2008.01.034. Tashman S, Araki D. Effects of anterior cruciate ligament reconstruction on in vivo, dynamic knee function. Clin Sports Med. 2013;32(1):47–59. doi:10.1016/j.csm.2012.08.006. Brandsson S, Karlsson J, Swärd L, Kartus J, Eriksson BI, Kärrholm J. Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med. 2016;30(3):361–7. http://www.ncbi.nlm.nih.gov/pubmed/12016076 Accessed February 21, 2016. Hofbauer M, Thorhauer ED, Abebe E, Bey M, Tashman S. Altered tibiofemoral kinematics in the affected knee and compensatory changes in the contralateral knee after anterior cruciate ligament reconstruction. Am J Sports Med. 2014. doi:10.1177/0363546514549444. DeFrate LE. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med. 2006;34(8):1240–6. doi:10.1177/0363546506287299. Zhu Z, Li G. An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images. Comput Methods Biomech Biomed Eng. 2012;15(11):1245–56. doi:10.1080/10255842.2011.597387. Van de Velde SK, Bingham JT, Hosseini A, et al. Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum. 2009;60(12):3693–702. doi:10.1002/art.24965. Wang L, Lin L, Feng Y. Clinical biomechanics anterior cruciate ligament reconstruction and cartilage contact forces—a 3D computational simulation. Clin Biomech. 2015;(in press)(10):6–11. doi:10.1016/j.clinbiomech.2015.08.007. Hosseini A, Li J-S, Gill TJ, Li G. Meniscus injuries alter the kinematics of knees with anterior cruciate ligament deficiency. Orthop J Sport Med. 2014;2(8):2325967114547346. doi:10.1177/2325967114547346. Using dual flouroscopic imaging techniques combined with 3D-MRI for bone model reconstruction, this study observed the kinematic behavior of ACL-deficient knees with meniscus tears during stair ascending activities. This is a typical 2D–3D image matching method, and the study demonstrated that combined ACL/meniscus injury could alter the kinematics of ACL-injured knees in a different way compared with knees with isolated ACL tears. This can lead to future studies to specificify treatments for patients with combined ACL/meniscus injuries. Hosseini A, Van de Velde S, Gill TJ, Li G. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament. J Orthop Res. 2012;30(11):1781–8. doi:10.1002/jor.22122. Chen C-H, Li J-S, Hosseini A, Gadikota HR, Gill TJ, Li G. Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait Posture. 2012;35(3):467–71. doi:10.1016/j.gaitpost.2011.11.009. Tsai T-Y, Lu T-W, Chen C-M, Kuo M-Y, Hsu H-C. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Med Phys. 2010;37(3):1273–84. http://www.ncbi.nlm.nih.gov/pubmed/20384265. Accessed February 21, 2016. Hoshino Y, Fu FH, Irrgang JJ, Tashman S. Can joint contact dynamics be restored by anterior cruciate ligament reconstruction? Clin Orthop Relat Res. 2013;471(9):2924–31. doi:10.1007/s11999-012-2761-1. This is another 2D–3D image matching method but this time using 3D-CT model and dynamic stereo x-ray, which allows short imaging times and high frame rates for more strenuous activities such as downhill running. Greater internal tibial rotation was associated with larger magnitude of sliding motion in the medial compartment during downhill running. The study also concluded that neither single bundle nor double bundle ACL reconstruction restored normal knee kinematics. Hoshino Y, Tashman S. Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment. Knee Surg Sports Traumatol Arthrosc. 2012;20(7):1268–75. doi:10.1007/s00167-011-1731-6. Massimini DF, Warner JJP, Li G. Non-invasive determination of coupled motion of the scapula and humerus—an in-vitro validation. J Biomech. 2011;44(3):408–12. doi:10.1016/j.jbiomech.2010.10.003. Hoshino Y, Wang JH, Lorenz S, Fu FH, Tashman S. Gender difference of the femoral kinematics axis location and its relation to anterior cruciate ligament injury: a 3D-CT study. Knee Surg Sports Traumatol Arthrosc. 2012;20(7):1282–8. doi:10.1007/s00167-011-1738-z. Victor J, Van Doninck D, Labey L, Van Glabbeek F, Parizel P, Bellemans J. A common reference frame for describing rotation of the distal femur: a ct-based kinematic study using cadavers. J Bone Joint Surg (Br). 2009;91(5):683–90. doi:10.1302/0301-620X.91B5.21827. Hoshino Y, Wang JH, Lorenz S, Fu FH, Tashman S. The effect of distal femur bony morphology on in vivo knee translational and rotational kinematics. Knee Surg Sport Traumatol Arthrosc. 2012;20(7):1331–8. doi:10.1007/s00167-011-1661-3. Espregueira-Mendes J, Pereira H, Sevivas N, et al. Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sport Traumatol Arthrosc. 2012;20(4):671–8. doi:10.1007/s00167-012-1914-9. Naraghi AM, Gupta S, Jacks LM, Essue J, Marks P, White LM. Anterior cruciate ligament reconstruction: MR imaging signs of anterior knee laxity in the presence of an intact graft. Radiology. 2012;263(3):802–10. doi:10.1148/radiol.12110779. Tanaka MJ, Jones KJ, Gargiulo AM, et al. Passive anterior tibial subluxation in anterior cruciate ligament-deficient knees. Am J Sports Med. 2013;41(10):2347–52. doi:10.1177/0363546513498995. Vassalou EE, Klontzas ME, Kouvidis GK, Matalliotaki PI, Karantanas AH. Rotational knee laxity in anterior cruciate ligament deficiency: an additional secondary sign on MRI. Am J Roentgenol. 2016;206(1):151–4. doi:10.2214/AJR.15.14816. Yau WP, Fok AWM, Yee DKH. Tunnel positions in transportal versus transtibial anterior cruciate ligament reconstruction: a case-control magnetic resonance imaging study. Arthrosc - J Arthrosc Relat Surg. 2013;29(6):1047–52. doi:10.1016/j.arthro.2013.02.010. Noh JH, Roh YH, Yang BG, Yi SR, Lee SY. Femoral tunnel position on conventional magnetic resonance imaging after anterior cruciate ligament reconstruction in young men: transtibial technique versus anteromedial portal technique. Arthroscopy. 2013;29(5):882–90. doi:10.1016/j.arthro.2013.01.025. Schairer WW, Haughom BD, Morse LJ, Li X, Ma CB. Magnetic resonance imaging evaluation of knee kinematics after anterior cruciate ligament reconstruction with anteromedial and transtibial femoral tunnel drilling techniques. Arthrosc - J Arthrosc Relat Surg. 2011;27(12):1663–70. doi:10.1016/j.arthro.2011.06.032. Haughom B, Schairer W, Souza RB, Carpenter D, Ma CB, Li X. Abnormal tibiofemoral kinematics following ACL reconstruction are associated with early cartilage matrix degeneration measured by MRI T1rho. Knee. 2012;19(4):482–7. doi:10.1016/j.knee.2011.06.015. Kothari A, Haughom B, Subburaj K, Feeley B, Li X, Ma CB. Evaluating rotational kinematics of the knee in ACL reconstructed patients using 3.0 Tesla magnetic resonance imaging. Knee. 2012;19(5):648–51. doi:10.1016/j.knee.2011.12.001. Zaid M, Lansdown D, Su F, et al. Abnormal tibial position is correlated to early degenerative changes one year following ACL reconstruction. J Orthop Res. 2015;33(7):1079–86. doi:10.1002/jor.22867. This study links tibiofemoral biomechanics to cartilage matrix composition in ACL reconstructed knees. T1ρ and T2 relaxation times for cartilage were calculated using 3D FSE sequences and T1ρ/T2 weighted images, while biomechanical measurements were calculated by 3D reconstruction of segmented bones. The study demonstrates how biomechanics has direct impact on cartilage matrix composition. Scanlan SF, Donahue JP, Andriacchi TP. The in vivo relationship between anterior neutral tibial position and loss of knee extension after transtibial ACL reconstruction. Knee. 2014;21(1):74–9. doi:10.1016/j.knee.2013.06.003. Hemmerich A, Van Der Merwe W, Batterham M, Vaughan CL. Knee rotational laxity: an investigation of bilateral asymmetry for comparison with the contralateral uninjured knee. Clin Biomech. 2012;27(6):607–12. doi:10.1016/j.clinbiomech.2012.01.005. Lansdown DA, Zaid M, Pedoia V. Reproducibility measurements of three methods for calculating in vivo MR-based knee kinematics. J Magn Reson Imaging. 2015;42(2):533–8. doi:10.1002/jmri.24790. Pearle AD, Daniel BL, Bergman AG, et al. Joint motion in an open MR unit using MR tracking. J Magn Reson Imaging. 1999;10(1):8–14. doi:10.1002/(SICI)1522-2586(199907)10:1<8::AID-JMRI2>3.0.CO;2-2. Tashiro Y, Okazaki K, Miura H, et al. Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sport Med. 2009;37(5):909–16. doi:10.1177/0363546508330134. Logan M, Dunstan E, Robinson J, Williams A, Gedroyc W, Freeman M. Tibiofemoral kinematics of the anterior cruciate ligament (ACL)-deficient weightbearing, living knee employing vertical access open “Interventional†multiple resonance imaging. Am J Sports Med. 2004;32(3):720–6. doi:10.1177/0095399703258771. Nicholson JA, Sutherland AG, Smith FW, Kawasaki T. Upright MRI in kinematic assessment of the ACL-deficient knee. Knee. 2012;19(1):41–8. doi:10.1016/j.knee.2010.11.008. Olender G, Hurschler C, Fleischer B, et al. Validation of an anatomical coordinate system for clinical evaluation of the knee joint in upright and closed MRI. Ann Biomed Eng. 2014;42(5):1133–42. doi:10.1007/s10439-014-0980-1. Lenhart RL, Kaiser J, Smith CR, Thelen DG. Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement. Ann Biomed Eng. 2015;43(11):2675–85. doi:10.1007/s10439-015-1326-3. This study combines information from both open and closed MRI scans and models the 3D reconstructed knee to a lower extremity model. By using simulations, the authors can measure joint biomechanics during movements, according to the muscle forces across the joints and surrounding soft tissue structures. These models may offer opportunities to calculate biomechanical parameters without having to acquire simultaneous images for various movements and tasks. Shefelbine SJ, Ma CB, Lee K-Y, et al. MRI analysis of in vivo meniscal and tibiofemoral kinematics in ACL-deficient and normal knees. J Orthop Res. 2006;24(6):1208–17. doi:10.1002/jor.20139. Narazaki S, Furumatsu T, Tanaka T, et al. Postoperative change in the length and extrusion of the medial meniscus after anterior cruciate ligament reconstruction. Int Orthop. 2015;39(12):2481–7. doi:10.1007/s00264-015-2704-z. Furumatsu T, Miyazawa S, Tanaka T, Okada Y, Fujii M, Ozaki T. Postoperative change in medial meniscal length in concurrent all-inside meniscus repair with anterior cruciate ligament reconstruction. Int Orthop. 2014;38(7):1393–9. doi:10.1007/s00264-013-2238-1. Mall NA, Chalmers PN, Moric M. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014. doi:10.1177/0363546514542796. Biercevicz AM, Akelman MR, Fadale PD, et al. MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med. 2015;43(3):693–9. doi:10.1177/0363546514561435. Chang MJ, Chang CB, Choi JY, Je MS, Kim TK. Can magnetic resonance imaging findings predict the degree of knee joint laxity in patients undergoing anterior cruciate ligament reconstruction? BMC Musculoskelet Disord. 2014;15(1):214. doi:10.1186/1471-2474-15-214. Sutter EG, Widmyer MR, Utturkar GM, Spritzer CE, Garrett WE, DeFrate LE. In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity. Am J Sports Med. 2015;43(2):370–6. doi:10.1177/0363546514559821. Andriacchi TP, Mündermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol. 2006;18(5):514–8. doi:10.1097/01.bor.0000240365.16842.4e. Heijink A, Gomoll AH, Madry H, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sport Traumatol Arthrosc. 2012;20(3):423–35. doi:10.1007/s00167-011-1818-0. Neuman P, Owman H, Müller G, Englund M, Tiderius CJ, Dahlberg LE. Knee cartilage assessment with MRI (dGEMRIC) and subjective knee function in ACL injured copers: a cohort study with a 20 year follow-up. Osteoarthr Cartilage. 2014;22(1):84–90. doi:10.1016/j.joca.2013.10.006. Wang A, Pedoia V, Su F, et al. MR T1ρ and T2 of meniscus after acute anterior cruciate ligament injuries. Osteoarthr Cartilage. 2015. doi:10.1016/j.joca.2015.11.012.