Functional involvement of a conserved motif in the middle region of the human ribosomal protein eL42 in translation

Biochimie - Tập 218 - Trang 96-104 - 2024
Konstantin N. Bulygin1, Alexey A. Malygin1, Dmitri M. Graifer1
1Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia

Tài liệu tham khảo

Khatter, 2015, Structure of the human 80S ribosome, Nature, 520, 640, 10.1038/nature14427 Shao, 2016, Decoding mammalian ribosome-mRNA states by translational GTPase complexes, Cell, 167, 1229, 10.1016/j.cell.2016.10.046 Bhaskar, 2020, Dynamics of uS19 C-terminal tail during the translation elongation cycle in human ribosomes, Cell Rep., 31, 10.1016/j.celrep.2020.03.037 Hilal, 2022, Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon, Science, 376, 1338, 10.1126/science.abg3875 Graifer, 2015, Roles of ribosomal proteins in the functioning of translational machinery of eukaryotes, Biochimie, 109, 1, 10.1016/j.biochi.2014.11.016 Graifer, 2018, Interaction of mRNA with ribosomes in the course of translation in higher eukaryotes, 1 Hoang, 2004, Creating ribosomes with an all-RNA 30S subunit P site, Proc. Natl. Acad. Sci. USA, 101, 12439, 10.1073/pnas.0405227101 Khairulina, 2010, Eukaryote-specific motif of ribosomal protein S15 neighbors A site codon during elongation and termination of translation, Biochimie, 92, 820, 10.1016/j.biochi.2010.02.031 Sharifulin, 2012, A central fragment of ribosomal protein S26 containing the eukaryote-specific motif YxxPKxYxK is a key component of the ribosomal binding site of mRNA region 50 of the E site codon, Nucleic Acids Res., 40, 3056, 10.1093/nar/gkr1212 Hountondji, 2012, Lys53 of ribosomal protein L36AL and the CCA end of a tRNA at the P/E hybrid site are in close proximity on the human ribosome, Chembiochem, 13, 1791, 10.1002/cbic.201200208 Sharifulin, 2015, Molecular contacts of ribosephosphate backbone of mRNA with human ribosome, Biochim. Biophys. Acta, Gene Regul. Mech., 1849, 930, 10.1016/j.bbagrm.2015.06.001 Babaylova, 2019, Tetrapeptide 60–63 of human ribosomal protein uS3 is crucial for translation initiation, Biochim. Biophys. Acta, Gene Regul. Mech., 1862, 10.1016/j.bbagrm.2019.194411 Bulygin, 2020, The functional role of the C-terminal tail of the human ribosomal protein uS19, Biochim. Biophys. Acta, Gene Regul. Mech., 1863, 10.1016/j.bbagrm.2020.194490 Bulygin, 2022, The functional role of the eukaryote-specific motif YxxPKxYxK of the human ribosomal protein eS26 in translation, Biochim. Biophys. Acta - Gene Regul. Mech., 1865, 10.1016/j.bbagrm.2022.194842 Hountondji, 2019, Ribosomal protein eL42 contributes to the catalytic activity of the yeast ribosome at the elongation step of translation, Biochimie, 158, 20, 10.1016/j.biochi.2018.12.005 Gopanenko, 2017, Human ribosomal protein eS1 is engaged in cellular events related to processing and functioning of U11 snRNA, Nucleic Acids Res., 45, 9121, 10.1093/nar/gkx559 Graifer, 1992, Biochim. Biophys. Acta, 1171, 56, 10.1016/0167-4781(92)90139-Q Kossinova, 2013, A novel insight into the mechanism of mammalian selenoprotein synthesis, RNA, 19, 1147, 10.1261/rna.036871.112 Ochkasova, 2021, AP sites in various mRNA positions cross-link to the protein uS3 in the translating mammalian ribosome, Biochim. Biophys. Acta, Proteins Proteomics, 1869, 10.1016/j.bbapap.2021.140698 Behrmann, 2015, Structural snapshots of actively translating human ribosomes, Cell, 161, 845, 10.1016/j.cell.2015.03.052 Ben-Shem, 2011, The structure of the eukaryotic ribosome at 3.0 Å resolution, Science, 334, 1524, 10.1126/science.1212642 Klinge, 2011, Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6, Science, 334, 941, 10.1126/science.1211204 Klinge, 2012, Atomic structures of the eukaryotic ribosome, Trends Biochem. Sci., 37, 189, 10.1016/j.tibs.2012.02.007 Wilson, 2012, The structure and function of the eukaryotic ribosome, Cold Spring Harb. Perspect. Biol., 4, a011536, 10.1101/cshperspect.a011536 Tirumalai, 2021, The peptidyl transferase center: a window to the past, Microbiol. Mol. Biol. Rev., 85, 10.1128/MMBR.00104-21 Wells, 2020, Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes, PLoS Biol., 10.1371/journal.pbio.3000780 Shirai, 2010, Methylation of ribosomal protein L42 regulates ribosomal function and stress-adapted cell growth, J. Biol. Chem., 285, 22448, 10.1074/jbc.M110.132274 de Loubresse, 2014, Structural basis for the inhibition of the eukaryotic ribosome, Nature, 513, 517, 10.1038/nature13737 Kawai, 1992, Drastic alteration of cycloheximide sensitivity by substitution of one amino acid in the L41 ribosomal protein of yeasts, J. Bacteriol., 174, 254, 10.1128/jb.174.1.254-262.1992 Takaku, 2004, A Gcn4p homolog is essential for the induction of a ribosomal protein L41 variant responsible for cycloheximide resistance in the yeast Candida maltosa, J. Biol. Chem., 279, 23030, 10.1074/jbc.M400888200 Kaufer, 1983, Cycloheximide resistance in yeast: the gene and its protein, Nucleic Acids Res., 11, 3123, 10.1093/nar/11.10.3123 Jia, 2021, Peptidyl transferase center decompaction and structural constraints during early protein elongation on the ribosome, Sci. Rep., 11, 10.1038/s41598-021-02985-7 Graifer, 2019, Hydroxylation of protein constituents of the human translation system: structural aspects and functional assignments, Future Med. Chem., 10.4155/fmc-2018-0317 Yanshina, 2020, Replacement of hydroxylated His39 in ribosomal protein uL15 with Ala or Thr impairs the translational activity of human ribosomes, Mol. Biol. (Mosc.), 54, 449, 10.1134/S0026893320030206 Zgadzay, 2022, E-site drug specificity of the human pathogen Candida albicans ribosome, Sci. Adv., 8, 10.1126/sciadv.abn1062 Li, 2022, Differential paralog-Specific expression of multiple small subunit proteins cause variations in Rpl42/eL42 incorporation in ribosome in fission yeast, Cells, 11, 2381, 10.3390/cells11152381