Functional in situ assessment of human articular cartilage using MRI: a whole-knee joint loading device
Tóm tắt
The response to loading of human articular cartilage as assessed by magnetic resonance imaging (MRI) remains to be defined in relation to histology and biomechanics. Therefore, an MRI-compatible whole-knee joint loading device for the functional in situ assessment of cartilage was developed and validated in this study. A formalin-fixed human knee was scanned by computed tomography in its native configuration and digitally processed to create femoral and tibial bone models. The bone models were covered by artificial femoral and tibial articular cartilage layers in their native configuration using cartilage-mimicking polyvinyl siloxane. A standardized defect of 8 mm diameter was created within the artificial cartilage layer at the central medial femoral condyle, into which native cartilage samples of similar dimensions were placed. After describing its design and specifications, the comprehensive validation of the device was performed using a hydraulic force gauge and digital electronic pressure-sensitive sensors. Displacement-controlled quasi-static uniaxial loading to 2.5 mm
$$(\delta _{2.5})$$
and 5.0 mm
$$(\delta _{5.0})$$
of the mobile tibia versus the immobile femur resulted in forces of
$$141 \pm 8$$
N
$$(\delta _{2.5})$$
and
$$906 \pm 38$$
N
$$(\delta _{5.0})$$
(on the entire joint) and local pressures of
$$0.680 \pm 0.088$$
MPa
$$(\delta _{2.5})$$
and
$$1.050 \pm 0.100$$
MPa
$$(\delta _{5.0})$$
(at the site of the cartilage sample). Upon confirming the MRI compatibility of the set-up, the response to loading of macroscopically intact human articular cartilage samples (
$$n=5$$
) was assessed on a clinical 3.0-T MR imaging system using clinical standard proton-density turbo-spin echo sequences and T2-weighted multi-spin echo sequences. Serial imaging was performed at the unloaded state
$$(\delta _{0})$$
and at consecutive loading positions (i.e. at
$$\delta _{2.5}$$
and
$$\delta _{5.0})$$
. Biomechanical unconfined compression testing (Young’s modulus) and histological assessment (Mankin score) served as the standards of reference. All samples were histologically intact (Mankin score,
$$1.8 \pm 1.3$$
) and biomechanically reasonably homogeneous (Young’s modulus,
$$0.42 \pm 0.14$$
MPa). They could be visualized in their entirety by MRI and significant decreases in sample height [
$$\delta _{0}$$
:
$$2.86 \pm 0.25$$
mm;
$$\delta _{2.5}$$
:
$$2.56 \pm 0.25$$
mm;
$$\delta _{5.0}$$
:
$$2.02 \pm 0.16$$
mm;
$$p<0.001$$
(repeated-measures ANOVA)] as well as pronounced T2 signal decay indicative of tissue pressurization were found as a function of compressive loading. In conclusion, our compression device has been validated for the noninvasive response-to-loading assessment of human articular cartilage by MRI in a close-to-physiological experimental setting. Thus, in a basic research context cartilage may be functionally evaluated beyond mere static analysis and in reference to histology and biomechanics.
Tài liệu tham khảo
Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P (2007) The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy 23:852–861. doi:10.1016/j.arthro.2007.05.018
Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints-part I: tibial surface of the knee. J Biomech Eng 105:216–225
Alibegovic A, Balazic J, Petrovic D, Hribar G, Blagus R, Drobnic M (2014) Viability of human articular chondrocytes harvested postmortem: changes with time and temperature of in vitro culture conditions. J Forensic Sci 59:522–528. doi:10.1111/1556-4029.12330
Andriacchi TP, Koo S, Scanlan SF (2009) Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 91(Suppl 1):95–101. doi:10.2106/JBJS.H.01408
Bae WC, Schumacher BL, Sah RL (2007) Indentation probing of human articular cartilage: effect on chondrocyte viability. Osteoarthr Cartil 15:9–18. doi:10.1016/j.joca.2006.06.007
Bay-Jensen AC et al (2010) Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int 30:435–442. doi:10.1007/s00296-009-1183-1
Chan DD, Neu CP, Hull ML (2009) Articular cartilage deformation determined in an intact tibiofemoral joint by displacement-encoded imaging Magnetic resonance in medicine. Magn Reson Med 61:989–993. doi:10.1002/mrm.21927
Chan DD, Cai L, Butz KD, Trippel SB, Nauman EA, Neu CP (2016) In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee. Sci Rep 6:19220. doi:10.1038/srep19220
Donahue TL, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124:273–280
Gahunia HK, Lemaire C, Babyn PS, Cross AR, Kessler MJ, Pritzker KP (1995) Osteoarthritis in rhesus macaque knee joint: quantitative magnetic resonance imaging tissue characterization of articular cartilage. J Rheumatol 22:1747–1756
Grunder W (2006) MRI assessment of cartilage ultrastructure. NMR Biomed 19:855–876. doi:10.1002/nbm.1092
Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW (2015) Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarth Cartil 23:1639–1653. doi:10.1016/j.joca.2015.05.026
Herberhold C et al (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32:1287–1295
Johnson VL, Giuffre BM, Hunter DJ (2012) Osteoarthritis: what does imaging tell us about its etiology? Semin Musculoskelet Radiol 16:410–418. doi:10.1055/s-0032-1329894
Juras V et al (2009) In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI. J Magn Reson 197:40–47. doi:10.1016/j.jmr.2008.11.019
Jurvelin JS, Buschmann MD, Hunziker EB (1997) Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J Biomech 30:235–241
Kleemann RU, Krocker D, Cedraro A, Tuischer J, Duda GN (2005) Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarth Cartil 13:958–963. doi:10.1016/j.joca.2005.06.008
Kurosawa H, Fukubayashi T, Nakajima H (1980) Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res 149:283–290
Lee SJ et al (2006) Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 34:1334–1344. doi:10.1177/0363546506286786
Li LP, Herzog W (2004) Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization. J Biomech 37:375–382
Link TM, Neumann J, Li X (2016) Prestructural cartilage assessment using MRI. J Magn Resonan Imaging JMRI. doi:10.1002/jmri.25554
Lopez O, Amrami KK, Manduca A, Rossman PJ, Ehman RL (2007) Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear. J Magn Reson Imaging JMRI 25:310–320. doi:10.1002/jmri.20857
Madry H et al (2016) Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 24:1753–1762. doi:10.1007/s00167-016-4068-3
Mandikos MN (1998) Polyvinyl siloxane impression materials: an update on clinical use. Aust Dent J 43:428–434
Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537
Menezes NM, Gray ML, Hartke JR, Burstein D (2004) T2 and T1rho MRI in articular cartilage systems magnetic resonance in medicine. Magn Reson Med 51:503–509. doi:10.1002/mrm.10710
Myers ER, Mow VC (1983) Biomechanics of cartilage and its response to biomechanical stimuli. In: Hall BK (ed) Cartilage—structure, function and biochemistry, vol 1. Academic Press, New York, pp 313–337
Nebelung S et al (2016a) Towards optical coherence tomography-based elastographic evaluation of human cartilage. J Mech Behav Biomed Mater 56:106–119. doi:10.1016/j.jmbbm.2015.11.025
Nebelung S, Brill N, Tingart M, Pufe T, Kuhl C, Jahr H, Truhn D (2016b) Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration. Skelet Radiol 45:505–516. doi:10.1007/s00256-016-2334-6
Nebelung S, Tingart M, Pufe T, Kuhl C, Jahr H, Truhn D (2016c) Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration. Skelet Radiol 45:1649–1660. doi:10.1007/s00256-016-2480-x
Nebelung S et al (2017) Functional MR imaging mapping of human articular cartilage response to loading. Radiology 282:464–474. doi:10.1148/radiol.2016160053
Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43–B:752–757
Palmer AJ et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Jt J 95–B:738–746. doi:10.1302/0301-620X.95B6.31414
Pena E, Calvo B, Martinez MA, Doblare M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39:1686–1701. doi:10.1016/j.jbiomech.2005.04.030
Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–354. doi:10.1148/radiol.11101359
Shiomi T et al (2010) Loading and knee alignment have significant influence on cartilage MRI T2 in porcine knee joints. Osteoarth Cartil 18:902–908. doi:10.1016/j.joca.2010.05.002
Simonsen KP, Rasmussen AR, Mathisen P, Petersen H, Borup F (2011) A fast preparation of skeletal materials using enzyme maceration. J Forens Sci 56:480–484. doi:10.1111/j.1556-4029.2010.01668.x
Souza RB et al (2014) Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarth Cartil 22:1367–1376. doi:10.1016/j.joca.2014.04.017
Suero EM et al (2015) The effect of distal tibial rotation during high tibial osteotomy on the contact pressures in the knee and ankle joints. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3553-4
Temple-Wong MM et al (2009) Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle. Osteoarth Cartil 17:1469–1476. doi:10.1016/j.joca.2009.04.017
Wang H, Koff MF, Potter HG, Warren RF, Rodeo SA, Maher SA (2015) An MRI-compatible loading device to assess knee joint cartilage deformation: effect of preloading and inter-test repeatability. J Biomech 48:2934–2940. doi:10.1016/j.jbiomech.2015.08.006
Xia Y, Wang N, Lee J, Badar F (2011) Strain-dependent T1 relaxation profiles in articular cartilage by MRI at microscopic resolutions magnetic resonance in medicine. Magn Reson Med 65:1733–1737. doi:10.1002/mrm.22933