Functional fluoropolymers for fuel cell membranes

Progress in Polymer Science - Tập 30 - Trang 644-687 - 2005
Renaud Souzy1, Bruno Ameduri1
1Laboratory of Macromolecular Chemistry, UMR (CNRS) 5076, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue Ecole Normale, 34296 Montpellier Cedex 5, France

Tài liệu tham khảo

Grot, 1994, Perfluorinated ion exchange polymers and their use in research and industry, Macromol Symp, 82, 161, 10.1002/masy.19940820117 Thomas, 1999 Curtin, 2004, Advanced materials for improved PEMFC performances and life, J Power Sour, 131, 41, 10.1016/j.jpowsour.2004.01.023 Dillon, 2004, International activities in DFMC R&D: status of technologies and potential applications, J Power Sour, 127, 112, 10.1016/j.jpowsour.2003.09.032 Hickner, 2004, Alternative polymer systems for proton exchange membranes, Chem Rev, 104, 4587, 10.1021/cr020711a Kreuer, 1997, On the development of proton conducting materials for technological applications, Solid State Ionics, 97, 1, 10.1016/S0167-2738(97)00082-9 Vielstich, 2003 Li, 2003, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100°C, Chem Mater, 15, 4896, 10.1021/cm0310519 Kerres, 2001, Development of ionomer membranes for fuel cells, J Membr Sci, 185, 3, 10.1016/S0376-7388(00)00631-1 Savadogo, 1998, Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems, J New Mat Electrochem Syst, 1, 47 Kreuer, 2001, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J Membr Sci, 185, 29, 10.1016/S0376-7388(00)00632-3 Jones, 2001, Recent advances in the functionalization of polybenzimidazole and polyetherketone for fuel cell applications, J Membr Sci, 185, 41, 10.1016/S0376-7388(00)00633-5 Rikukawa, 2000, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog Polym Sci, 25, 1463, 10.1016/S0079-6700(00)00032-0 Inzelt, 2000, Electron and proton conducting polymers: recent developments and prospects, Electrochem Acta, 45, 2403, 10.1016/S0013-4686(00)00329-7 Kreuer KD. New polymeric systems for fuel cell membranes. In Ref. [3], vol. 3, p. 420–46. D'Alelio G. Ion exchangers. US Patent 2,366,007; 1944 (General Electrical). Abrams, 1956, High-porosity polystyrene cation-exchange resins, Ind Eng Chem, 48, 1469, 10.1021/ie51400a030 Prater, 1990, The renaissance of the solid polymer fuel cell, J Power Sour, 29, 239, 10.1016/0378-7753(90)80023-7 Faure S, Mercier R, Aldebert P, Pineri M, Sillion B. Sulfonated polyimides, membranes and fuel cells, PCT WO 9742253; 1997 (CEA). Genies, 2001, Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes, Polymer, 42, 359, 10.1016/S0032-3861(00)00384-0 Genies, 2001, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium, Polymer, 42, 5097, 10.1016/S0032-3861(00)00645-5 Besse, 2002, Sulfonated polyimides for fuel cell electrode membrane assemblies, J New Mat Electrochem Syst, 2, 109 Guo, 2002, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-bis(4-aminophenyl)fluorene-2,7-disulfonic acid, Macromolecules, 35, 6707, 10.1021/ma020260w Einsla, 2004, Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis, J Polym Sci Part A: Polym Chem, 42, 862, 10.1002/pola.11026 Essafi, 2004, Sulfonated polyimide ionomers: a structural study, Macromolecules, 37, 1431, 10.1021/ma034965p Nolte, 1993, Partially sulfonated poly(arylene ether sulfone)—a versatile proton conducting membrane material for modern energy conversion technologies, J Membr Sci, 83, 211, 10.1016/0376-7388(93)85268-2 Alberti, 2001, Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C), J Membr Sci, 185, 73, 10.1016/S0376-7388(00)00635-9 Kaliaguine, 2003, Properties of SPEEK based PEMs for fuel cell application, Catal Today, 82, 213, 10.1016/S0920-5861(03)00235-9 Nolte, 1993, Modified polysulfones as membrane electrolytes, Conf Ser Publ, 3, 381 Genova-Dimitrova, 2001, Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid, J Membr Sci, 185, 59, 10.1016/S0376-7388(00)00634-7 Wang, 2001, Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization, Macromol Symp, 175, 387, 10.1002/1521-3900(200110)175:1<387::AID-MASY387>3.0.CO;2-1 Miyatake, 2001, Synthesis and proton conductivities of phosphonic acid containing poly-(arylene ether)s, J Polym Sci Part A: Polym Chem, 39, 3211, 10.1002/pola.1303 Xiao, 2002, Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization, Polymer, 43, 5335, 10.1016/S0032-3861(02)00365-8 Wang, 2002, Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, J Membr Sci, 197, 231, 10.1016/S0376-7388(01)00620-2 Lafitte, 2002, Sulfo-phenylation of polysulfones for proton-conducting fuel cell membranes, Macromol Rapid Commun, 23, 896, 10.1002/1521-3927(20021001)23:15<896::AID-MARC896>3.0.CO;2-P Harrison, 2003, Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers, J Polym Sci Part A: Polym Chem, 41, 2264, 10.1002/pola.10755 Einsta, 2004, Synthesis and characterizations of hydroxy-functionalized poly(arylene ether sulfone)s and conversion to proton conducting membranes for fuel cells, Prepr Symp (Am Chem Soc, Div Fuel Cell Chem), 49, 601 Tchatchoua, 2004, Novel sulfonated proton exchange membranes for fuel cell applications: partially fluorinated copolymers, Prepr Symp (Am Chem Soc, Div Fuel Cell Chem), 49, 616 Helmer-Metzman F, Osan F, Schneller A, Ritter H, Ledjeff K, Nolte R, et al. Preparation of sulfonated aromatic polyether ketones as polyelectrolyte membranes European Patent 574,791,A2; 1993. Bauer, 2000, Electrochemical characterisation of sulfonated polyetherketone membranes, J New Mater Electrochem Syst, 3, 93 Zaidi, 2000, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J Membr Sci, 173, 17, 10.1016/S0376-7388(00)00345-8 Huang, 2001, Sulfonation of poly(ether ether ketone) (PEEK): kinetic study and characterization, J Appl Polym Sci, 82, 2651, 10.1002/app.2118 Gao, 2003, Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials, J Polym Sci Part A: Polym Chem, 41, 2731, 10.1002/pola.10820 Xing, 2004, Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes, J Polym Sci Part A: Polym Chem, 42, 2866, 10.1002/pola.20152 Xing, 2004, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J Membr Sci, 229, 95, 10.1016/j.memsci.2003.09.019 Adams, 1935, Adsorptive properties of synthetic resins, J Soc Chem Ind, 54, 17 Hay AS. Process of making poly-(2,6-diaryl-1,4-phenylene ethers). US Patent 3,432,466; 1969 (General Electrical). Hodgdon RB, Hay AS. Sulfonated aryl-substituted polyphenylene ether ion exchange membranes. US Patent 3,528,858; 1970 (General Electrical). Leninivin C. Elaboration et validation de dérivés polyparaphenylène substitués sulfonés comme électrolyte solide pour piles à combustible à membrane échangeuse de protons. PhD dissertation, Poitiers University, France; 2003. Balland-Longeau A, Pereira F, Capron P, Mercier R. Polyméres de type polyphenylène, leur procédé de préparation, membrane et dispositif de pile à combustible comprenant ces membranes. Fr Patent 0,210,008; 2002 (Commissariat à l'Energie Atomique). Kobayashi, 1998, Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene), Solid State Ionics, 106, 219, 10.1016/S0167-2738(97)00512-2 Ghassemi, 2004, New multiblock copolymers of sulfonated poly(4′-phenyl-2,5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes. II, Polymer, 45, 5855, 10.1016/j.polymer.2004.06.009 Xiao, 1993, Preliminary study of phosphonate ion exchange membranes for PEM fuel cells, Polym Mater Sci Eng (Am Chem Soc, Div PMSE), 68, 55 Powers, 1986, 355 Dang, 1993, Ionic conductivity of conjugated water-soluble rigid-rod polymers, J Polym Sci Part B: Polym Phys, 31, 1941, 10.1002/polb.1993.090311306 Asensio, 2002, Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles, J Polym Sci Part A: Polym Chem, 40, 3703, 10.1002/pola.10451 Roziere, 2003, Non-fluorinated polymer materials for proton exchange membrane fuel cells, Annu Rev Mater Res, 33, 503, 10.1146/annurev.matsci.33.022702.154657 Gautier-Luneau, 1992, Organic–inorganic protonic polymer electrolytes as membrane for low-temperature fuel cell, Electrochim Acta, 37, 1615, 10.1016/0013-4686(92)80122-3 Allcock, 2002, Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells, J Membr Sci, 201, 47, 10.1016/S0376-7388(01)00702-5 Allcock, 2002, Phenylphosphonic acid functionalized poly[aryloxyphosphazenes], Macromolecules, 35, 3484, 10.1021/ma0116295 (c) Allcock HR, Lvov SN. Design, synthesis, and performance of new proton-conducting membranes based on phosphazene platform, Advances in materials for proton exchange membranes fuel cell systems, Alisomar Conference, Grounds; Feb 23–26 2003 (Preprint #8). Wall, 1972 Fiering, 1994, Fluoroplastics, 15, 339 Johns, 2000, Fluoroproducts—the extremophiles, J Fluorine Chem, 104, 5, 10.1016/S0022-1139(00)00251-7 Scheirs, 1997, Modern fluoropolymers Ajroldi, 1997, Structural and physical properties of some fluoropolymers, Chim Ind, 79, 483 Hougham, 1999 Ebnesajjad S. Fluoroplastics, (non-)melt processible fluoroplastics. Norwich, NY, Plastic design library, handbook series, vols. 1 and 2; 2000. Ameduri, 2004 Imae, 2003, Fluorinated polymers, Curr Opin Colloid Interface Sci, 8, 308, 10.1016/S1359-0294(03)00050-5 Ameduri, 2001, Fluoroelastomers: synthesis, properties and applications, Progr Polym Sci, 26, 105, 10.1016/S0079-6700(00)00044-7 Ameduri B, Boutevin B. Update in fluoroelastomers: from perfluoroelastomers to fluorosilicones and fluorophosphazenes. J Fluorine Chem 2005; 126:221–9. Vecellio, 2000, Opportunities and developments in fluoropolymeric coatings, Prog Org Coatings, 40, 225, 10.1016/S0300-9440(00)00153-3 Wood, 2002, The effect of the fluoropolymer architecture on the exterior weathering of coatings, Macromol Symp, 187, 469, 10.1002/1521-3900(200209)187:1<469::AID-MASY469>3.0.CO;2-M Castelvetro, 2002, Structure control, coating properties, and durability of fluorinated acrylic-based polymers, J Coatings Technol, 74, 57, 10.1007/BF02697984 Bongiovanni, 2002, High peformance UV-cured coatings for wood protection, Prog Org Coatings, 45, 359, 10.1016/S0300-9440(02)00119-4 Bongiovanni, 2003, Photocurable wood coatings containing fluorinated monomers, Eur Coatings, Pitture Vernici, 11, 25 Jariwala CP, Eggleston JD, Yandrasit SMA, Dams RJ. Alkylated fluorochemical oligimers and use thereof. US Patent 6,288,157; 2003 (3M). Ciardelli, 1997, New fluorinated acrylic polymers for improving weatherability of building stone materials, Prog Org Coatings, 32, 43, 10.1016/S0300-9440(97)00063-5 Castelvetro, 2001, Design for fluorinated acrylic-based polymers as water repellent intrinsically photostable coating materials for stone, vol. 10, 129 Head RA, Johnson S. Coating compositions for optical fibers. Eur Patent Appl 260,842; 1988 (Imperial Chem Industries PLC, UK). Barraud J, Gervat S, Ratovelomanana V, Boutevin B, Parisi JP, Cahuzac A, Octeur RJ. Cladding compositions for optical fibres. French Patent 9,204,222; 1992 (Alcatel). Schuman PD. Curable, inter-polymer optical fiber cladding compositions. PCT Int Appl WO 9603609 A1; 1996 (Optical Polymer Research, Inc). Youngblood, 2003, Coatings based on side-chain ether-linked poly(ethylene glycol) and fluorocarbon polymers for the control of marine biofouling, Biofouling, 19, 91, 10.1080/0892701021000053381 Boutevin B, Pietrasanta Y. Les Acrylates et Polyacrylates Fluorés: Dérivés et Applications. Puteaux (Fr), Erec; 1988. Timperley, 2003, Bis(fluoroalkyl)acrylic and methacrylic phosphate monomers, their polymers and some of their properties, J Fluorine Chem, 121, 23, 10.1016/S0022-1139(02)00314-7 Doyle, 2003, Perfluorinated membranes, vol. 3(30), 351 Kissa, 1994 Pabon, 2002, Fluorinated surfactants: synthesis, properties, effluent treatment, J Fluorine Chem, 114, 149, 10.1016/S0022-1139(02)00038-6 Ober, 2002, New strategies for high resolution photoresists, J Photopolym Sci Technol, 15, 603, 10.2494/photopolymer.15.603 Kishimura, 2002, Dissolution characteristics of acidic groups for 157-nm resists, J Photopolym Sci Technol, 15, 625, 10.2494/photopolymer.15.625 Feiring, 2002, Amorphous fluoropolymers from tetrafluoroethylene and bulky vinyl esters or vinyl ethers, J Fluorine Chem, 118, 95, 10.1016/S0022-1139(02)00205-1 Vohra, 2003, Fluoropolymer resists for 157nm lithography, Proc SPIE, Int Soc Opt Eng, 539 Feiring, 2003, Design of very transparent fluoropolymer resists for semiconductor manufacture at 157nm, J Fluorine Chem, 122, 11, 10.1016/S0022-1139(03)00075-7 Krebs, 2003, Fluorinated molecules relevant to conducting polymer research, J Fluorine Chem, 120, 77, 10.1016/S0022-1139(02)00289-0 LaConti AB. Power systems for small underwater vehicules. MIT, Marine Industry Collegium; 1998. Arcella, 2003, High performance perfluoropolymer films for membranes, Ann NY Acad Sci, 984, 226, 10.1111/j.1749-6632.2003.tb06002.x Gibbs HH, Vienna VW, Griffin RN. US Patent 3,041,317; 1962 (DuPont de Nemours). Connolly DJ, Gresham WF. Sulfo derivatives of perfluorovinyl ether monomers. USP 3,282,875; 1966 (E.I. DuPont de Nemours and Company). Carl WP, Ezzel BR. Low equivalent weight sulfonic fluoropolymers. US Patent 4,940,525; 1990 (Dow Chemical Co.). Curtin, 2004, Advance materials for improved PEMFC performance and life, J Power Sour, 131, 41, 10.1016/j.jpowsour.2004.01.023 Yamabe M, Miyake H, Arai K. Fluoropolymer cation-exchange membranes. Japanese Patent 5,228,588; 1977 (Asahi Glass Co.). Krespan, 1981, Perfluoroallyl fluorosulfate, a reactive new perfluoroallylating agent, J Am Chem Soc, 103, 5598, 10.1021/ja00408a066 Kostov, 1993, Study of the synthesis of perfluorovinyl-sulfonic functional monomer and its copolymerization with tetrafluoroethylene, J Appl Polym Sci, 47, 735, 10.1002/app.1993.070470417 Nguyen, 1991, A new route to perfluorinated sulfonic acid resin intermediates, Eur Polym J, 27, 435, 10.1016/0014-3057(91)90202-Y DesMarteau DD. Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom. US Patent 5,463,005; 1995 (Gas Research Institute). Banks, 1966, Perfluoroalkyl derivatives of sulfur. VIII. Synthesis and reactions of perfluoroethylenesulfonyl fluoride, J Chem Soc, C1171 Navarrini W, DesMarteau DD. US Patent 5,103,049; 1992 (Ausimont S.p.A.). Chen, 1989, Iodofluoroalkylsulfonyl fluorides-synthesis and conversion to new derivatives, J Fluorine Chem, 43, 329, 10.1016/S0022-1139(00)82721-9 Paleta, 1978, Haloacrylic acids. IX. Laboratory scale production of some trifluoroacrylic acid derivatives, Sb Sk Chem Technol Praze, C25, 105 Ezzel BR, Carl WP. Low equivalent weight sulfonic fluoropolymers. European Patent EP 289,869; 1988 (Dow Chemical Corp.). DuPont. British Patent Appl. 2,081,267A. Ezzel BR, Carl WP. Novel polymers having acid functionality. US Patent 4,330,654; 1980 (Dow Chemical Co.). Moore, 1989, Morphology and chemical properties of the Dow persulfonate ionomers, Macromolecules, 22, 3594, 10.1021/ma00199a016 Ukihashi, 1986, Polymeric fluorocarbon acids and their applications, Progr Polym Sci, 12, 229, 10.1016/0079-6700(86)90001-8 (b) Asahi Glass Co. Ltd, Japanese Patent 5,761,339. Ukihashi, 1982, Perfluorocarboxylate polymer membranes, vol. 17, 427 Yamabe, 2000, Novel phosphonated perfluorocarbon polymers, Eur Polym J, 36, 1035, 10.1016/S0014-3057(99)00158-5 Petersen, 1996, The synthesis of phosphonate ester containing fluorinated vinyl ethers, J Org Chem, 61, 8024, 10.1021/jo961086a Kotov, 1997, Preparation of perfluorocarbon polymers containing phosphonic acid groups, J Fluorine Chem, 82, 13, 10.1016/S0022-1139(96)03534-8 Tatemoto M, Nakamura T. Preparation of fluorine-containing vinylphosphonic acid esters. Japanese Patent 02,304,096, 1990 (Chem. Abst. 1990, 114:247535) (Daikin Industries Ltd). Seko, 1982, Perfluorocarboxylic acid membrane and membrane chlor-alkali process developed by Asahi Chemical industry, vol. 15, 365 Kirsh, 1990, Carbon-chain perfluorinated copolymers with functional groups and related cation-exchange membranes: synthesis, structure, and properties, Uspekhi Khim, 59, 970 Mislavski, 1999, Fluorinated polymers with functional groups, vol. 1, chapter 7, 91 Dunsch, 1990, Perfluoro anion-exchange polymeric films on glassy carbon electrodes, J Electroanal Chem, 280, 313, 10.1016/0022-0728(90)87006-6 Eisenberg, 1982, Perfluorinated ionomer membranes, vol. 180 Trainham JA. US Patent 5,411,641; 1993 (DuPont de Nemours and Company). Yeager, 1995, Membrane applications, 333 Gibbard, 2002, Batteries versus fuel cells: the application of a disruptive technology Cooley GE, D'Agostino VF. Cation exchange membranes and method for the preparation of such membranes. US Patent 5,626,731; 1995 (National Power PLC). Moya W. Surface modified polymeric substrate and process. US Patent 6,179,132; 1998 (Millipore corporation). Naylor, 1996, Polymer membranes-materials, structures and separation performance, Rev Report, 8, 39 Olah, 1986, Perfluorinated resinsulfonic acid (Nafion-H®) catalysis in synthesis, Synthesis, 7, 513, 10.1055/s-1986-31692 Heitner-Wirguin, 1996, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, J Membr Sci, 120, 1, 10.1016/0376-7388(96)00155-X Mauritz, 2004, State of understanding of Nafion, Chem Rev, 104, 4535, 10.1021/cr0207123 Guo, 1999, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes, J Membr Sci, 154, 175, 10.1016/S0376-7388(98)00282-8 Yu, 2003, Development of novel self-humidifying composite membranes for fuel cells, J Power Sour, 124, 81, 10.1016/S0378-7753(03)00616-5 Curtin DE. High volume low cost manucfacturing process for Nafion membranes, abstracts for fuel cell seminar 2002. Palm Springs FL; Nov 18–21 2002. p. 834. Kostov, 1993, Synthesis and properties of fluorofunctional copolymers for membranes applications, J Appl Polym Sci, 47, 735, 10.1002/app.1993.070470417 DesMarteau DD. New copolymers for fuel cell membranes. US Patent, 5,463,006; 1995 (Gas Research Institute). Hung, 1999, Functional fluoromonomers and fluoropolymers, vol. 1, 51 Kotov, 1997, Preparation of perfluorocarbon polymers containing phosphonic acid groups, J Org Chem, 82, 13 Kato M, Akiyama K, Yamabe M. New perfluorocarbon polymers with phosphonic groups. Reports Res Lab Asahi Glass Co; 1983;33:135–148. Burton, 1989, Allylations of [(diethoxyphosphinyl)difluoromethyl]zinc bromide as a convenient route to 1,1-difluoro-3-alkenephosphonates, J Org Chem, 54, 613, 10.1021/jo00264a021 Feiring AE, Doyle CM, Roelofs MG, Farnham WB, Bekiarian PG, Blau HAK. Substantially fluorinated ionomers, World Demand WO 99/45048; 1999 (DuPont de Nemours and Company). Bekiarian, 2004, New substantially fluorinated ionomers for electrochemical applications, J Fluorine Chem, 125, 187, 10.1016/j.jfluchem.2004.05.007 Feiring AE, Doyle CM, Roelofs MG, Farnham WB, Bekiarian PG, Polyvinylidene fluoride ionomers containing pendant fluoroalkylsulfonyl imide or fluoroalkylsulfonyl methide groups. US Patent, 6,667,377; 2003 (E. I. duPont de Nemours and Company). Ameduri B, Armand M, Boucher M, Manseri A, Fluorosulfonted elastomers based on vinylidene fluoride endowed with low glass transition temperatures containing neither tetrafluoroethylene nor siloxane groups. World Demand WO 01/49,757; 2001 (Hydro-Québec). Ameduri B, Armand M, Boucher M, Manseri A. Elastomères fluorosulfonés à faible Tg à base d'hexafluoropropène et ne contenant ni du tétrafluoroéthylène, ni de groupement siloxane. World Demand WO 01/49,760 A1; 2001 (Hydro-Québec). Ameduri B, Armand M, Boucher M, Manseri A. Elastomères réticulables fluorés bromosulfonés à base de fluorure de vinylidène présentant une faible Tg et procédés pour leurs préparations. World Demand WO 01/96,268 A2; 2001 (Hydro-Québec). Ameduri B, Boucher M, Manseri A. Elastomères réticulables nitriles fluorosulfonés à base de fluorure de vinylidène présentant une faible Tg et procédés pour leurs préparations. World Demand WO 02/50,142 A1; 2002 (Hydro-Québec). Yamabe, 1992, A challenge to novel fluoropolymers, Makromol Chem Macromol Symp, 64, 11, 10.1002/masy.19920640104 Miyake, 1998, Synthesis and properties of perfluorocarboxylated polymers, J Fluorine Chem, 92, 137, 10.1016/S0022-1139(98)00257-7 Ameduri, 2003, Synthesis and polymerization of fluorinated monomers bearing a reactive lateral group. XIV. Radical copolymerization of vinylidene fluoride with methyl 1,1-dihydro-4,7-dioxaperfluoro-5,8-dimethyl non-1-enoate, J Polym Sci Part A: Polym Chem, 41, 3109, 10.1002/pola.10908 Souzy, 2004, Synthesis and (co)polymerization of monofluoro-, difluoro-, trifluoro-styrene and [(trifluorovinyl)oxy] benzene, Prog Polym Sci, 29, 75, 10.1016/j.progpolymsci.2003.09.002 Cohen, 1949, α,β,β-Trifluorostyrene and α-chloro-β,β- difluorostyrene, J Am Chem Soc, 71, 3439, 10.1021/ja01178a052 Prober, 1953, The synthesis and polymerization of some fluorinated styrenes, J Am Chem Soc, 75, 968, 10.1021/ja01100a058 Dixon, 1956, Elimination reaction of fluoro-olefins with organolithium compounds, J Org Chem, 21, 400, 10.1021/jo01110a005 Kazennikova GV, Talamaeva TV, Zimin AV, Simonov AP, Kocheshkov KA. Fluorinated styrenes. V. α,β,β-Trifluorostyrenes. Nank, Izv Akad Nauk SSSR Otd Khin: 1961. p.1063–1065. Rybakova, 1976, Synthesis and properties of trimethylsilyl esters of fluoro-containing vinylbenzenesulfonic acids, Zh Obsh Khim, 46, 117 Sorokina, 1982, Synthesis of trifluorostyrene and its derivatives by the reaction of (trifluorovinyl)trimethyltin aryl iodides in the presence of palladium complexes, Zh Org Khim, 18, 2458 Heinze, 1988, Palladium-catalyzed cross-coupling of perfluoroalkenylzinc reagents with aryl iodides. A new, simple synthesis of α,β,β-trifluorostyrenes and the stereoselective preparation of 1-arylperfluoropropenes, J Org Chem, 53, 2714, 10.1021/jo00247a010 Stone C, Steck AE, Lousenberg RD. Substituted trifluorostyrene compositions. US 5602185; 1997 (Ballard Power Systems, Inc.). Sanecki, 1992, Variation of transfer coefficient in electrochemical correlations of ρσ type. Reduction of aromatic sulfonyl fluorides on mercury electrode, Polish J Chem, 66, 101 Hodgdon, 1968, Preparation and polymerizability of substituted α,β,β,-trifluorostyrenes, J Polym Sci Part A-1, Polym Chem Ed, 6, 711, 10.1002/pol.1968.150060322 Barlett, 1973, Dimers of α,β,β-trifluorostyrene, J Am Chem Soc, 95, 7923, 10.1021/ja00804a092 Tellier, 1987, Reactivity of fluorodienes and fluorostyrenes obtained by a palladium catalyzed cross-coupling reaction, J Organomet Chem, 331, 281, 10.1016/0022-328X(87)80001-3 Tevlina AS, Ivankin AN, Korshak VV, Baranova NP, Nikitina TS, Rokhlin EM. Copolymerization of α,β,β-trifluorostyrene with some vinyl monomers. Mosk. Khim. Tekhnol. Inst., Moscow, USSR, deposited Doc., Viniti Chem Abst 127–81; 1981. p. 12. Stone, 2000, Phosphonic acid functionalized proton exchange membranes for PEM fuel cells, J New Mater Electrochem Syst, 3, 43 Xu, 1993, Preliminary study of phosphonate ion exchange membranes for PEM fuel cells, Polym Mater Sci Eng (Am Chem Soc, Div PMSE), 68, 120 Pineri M, Marsacq D, Ameduri B, Souzy R. Fluorinated membranes for fuel cell. FR 2843398; 2004 (Commissariat à l'Energie Atomique). Watanabe M, Ishiuchi H. Alkaline batteries containing fluorine compounds for corrosion resistance. JP 5013070; 1993 (Asahi Chemical). Yang, 1994, New ring-containing fluoropolymers, J Am Chem Soc, 116, 4135, 10.1021/ja00088a082 Smith, 1996, Perfluorocyclobutane aromatic polyethers. Synthesis and characterization of new siloxane-containing fluoropolymers, Macromolecules, 29, 852, 10.1021/ma951149b Pereta, 2002, Synthesis and thermal cyclopolymerization of heterocycle containing bis-ortho-diynyl arenes, Tetrahedron, 58, 10197, 10.1016/S0040-4020(02)01401-1 Luo, 2002, Design, synthesis, and properties of highly efficient side-chain dendronized nonlinear optical polymers for electro-optics, Adv Mater, 14, 1763, 10.1002/1521-4095(20021203)14:23<1763::AID-ADMA1763>3.0.CO;2-U Topping, 2002, Toward crown ether containing semifluorinated polyarylene amides for lithium battery membranes, Polym Prepr (Am Chem Soc, Div Polym Chem), 43, 486 Ligon, 2003, First separation and characterization of cis and trans 1,2-bisaryloxy perfluorocyclobutanes, J Fluorine Chem, 123, 139, 10.1016/S0022-1139(03)00113-1 Qing, 2003, Synthesis of 4,6-disubstituted pyrimidines via Suzuki and Kumada coupling reaction of 4,6-dichloropyrimidine, J Fluorine Chem, 120, 21, 10.1016/S0022-1139(02)00279-8 Clement KS, Ezzel BR, Babb DA, Richey WF. Reactive compounds containing perfluorocyclobutane rings. US 5037919; 1991 (Dow Chemical). Clement KS, Ezzel BR, Babb DA, Richey WF. Reactive compounds containing perfluorocyclobutane rings. US 5037919; 1991 (Dow Chemical). Clement KS, Ezzel BR, Babb DA. Reactive compounds containing perfluorocyclobutane rings. US 5021602; 1991 (Dow Chemical) Bartmann E, Plach H, Eidenschink R, Reiffenrath V, Pauluth D, Poetsch E et al. Vinyl compounds, and a liquid-crystalline medium. US 5403512; 1995 (Merck). Desmarteau DD, Martin CW, Ford LA, Xie Y. Sulfonated perfluorovinyl functional monomers, US 6268532; 2001 (3M Innovative Properties company). Smith, 2002, Perfluorocyclobutyl copolymers for microphonics, Adv Mater, 14, 1585, 10.1002/1521-4095(20021104)14:21<1585::AID-ADMA1585>3.0.CO;2-S Foulger, 2001, Optical and mechanical properties of poly(ethyleneglycol) methacrylate hydrogel encapsuled crystalline colloid arrays, Langmuir, 17, 6023, 10.1021/la010264e Foulger, 2001, Photonic bandgap composites, Adv Mater, 13, 1898, 10.1002/1521-4095(200112)13:24<1898::AID-ADMA1898>3.0.CO;2-V Zengin, 2002, Carbon nanotube doped polyaniline, Adv Mater, 14, 1480, 10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O Smith, 2000, Perfluorocyclobutyl (PFCB) liquid crystalline fluoropolymers. Synthesis and thermal cyclopolymerization of di(trifluorovinyloxy)-α-methylstylbene, Macromolecules, 33, 1126, 10.1021/ma991589t Traiphol, 2001, Bulk and interfacial studies of a new versatile semifluorinated lytropic liquid crystalline polymer, Macromolecules, 34, 3954, 10.1021/ma0017891 Traiphol, 2002, Surface ordering in thin films of liquid crystalline polymers containing fluorinated and protonated segments: neutron reflectometry study, J Polym Sci Part A Polym Chem, 40, 2817, 10.1002/polb.10346 Townsend, 1997, Interconnect process technology using perfluorocyclobutane (PFCB), Mater Res Soc Symp Proc, 443, 33 Fishbeck, 1997, Single-mode optical waveguides using a high temperature stable polymer with low losses in the 1.55μm range, Electron Lett, 33, 518, 10.1049/el:19970307 Perretie D, Bratton L, Bremmer J, Babb DA, Chen Q, Judy JH. Perflurocyclobutane containing aromatic ether polymers as an electronic grade resin for flat panel displays. In: Proceedings of SPIE—the international society for optical engineering, 1911 (Liquid Crystal Materials, Devices, and Applications II); 1993:15–20. Tumolillo, 1993, Multilevel registered polymeric Mach-Zehnder intensity modulator array, Appl Phys Lett, 62, 3068, 10.1063/1.109137 Smith, 2000, Perfluorocyclobutane (PFCB) polyaryl ethers. A versatile coating material, J Fluorine Chem, 104, 109, 10.1016/S0022-1139(00)00233-5 Grot WG, Molnar CJ, Resnick PR. Perhalocarboxylic acids by oxidation of perhalosulfinic acids. AU 544027; 1985 (DuPont de Nemours). Martin, 1992 Beckerbauer R. Fluorocarbon ethers. US 3397191; 1968 (DuPont de Nemours). Babb DA, Clement KS, Ezzel BR. Perfluorovinyl compounds, US 5023380; 1991 (Dow Chemical). (b) Babb DA, Clement KS, Richey WF, Ezzel BR. Perfluorocyclobutane ring-containing polymers. US 5037917; 1991 (Dow Chemical). Babb, 1993, Perfluorocyclobutane aromatic ether polymers, J Polym Sci Part A: Polym Chem, 31, 3465, 10.1002/pola.1993.080311336 Kennedy, 1995, Perfluorocyclobutane aromatic ether polymers. II. Thermal/oxidative stability and decomposition of a thermoset polymer, J Polym Sci Part A: Polym Chem, 33, 1859, 10.1002/pola.1995.080331113 Babb, 1995, Novel step-growth polymers from the thermal [2π+2π] cyclodimerization of fluorinated olefins, Polym Prepr (Am Chem Soc, Div Polym Chem), 36, 721 Babb DA, Clement KS, Ezzel BR. Polymers containing Perfluorocyclobutane ring. US 5159038; 1992 (Dow Chemical). Ji, 1998, [p-((Trifluorovinyl)oxy)phenyl]lithium: formation, synthetic utility, and theoretical support for a versatile new reagent in fluoropolymer chemistry, Organometallics, 17, 783, 10.1021/om9710531 Souzy, 2004, Synthesis of new aromatic perfluorovinyl ether monomers containing phosphonic acid functionality, J Fluorine Chem, 125, 1317, 10.1016/j.jfluchem.2004.03.010 Babb, 1996, Novel step-growth polymers from the thermal [2π+2π] cyclopolymerization of aryl trifluorovinyl ether monomers, ACS Symp Ser, 624, 431, 10.1021/bk-1996-0624.ch028 Boone, 1998, A new aromatic perfluorocyclobutane polymer: synthesis and thermal characterization of 1,3,5-tris[(4-trifluorovinyloxy)phenyl]benzene, Polym Prepr (Am Chem Soc, Div Polym Chem), 39, 812 Xu, 1998, A new phenylthiophene derivative with crosslinking capability, Polym Prepr (Am Chem Soc, Div Polym Chem), 39, 143 Narayan-Sarathy, 1998, Hydrosilation polymerization and thermal cure of divinyl trifluorovinyl ether monomers, Polym Prepr (Am Chem Soc, Div Polym Chem), 39, 609 Ford, 2000, New aromatic perfluorovinyl ether monomers containing the sulfonimide acid functionality, Polym Mater Sci Eng (Am Chem Soc, Div PMSE), 83, 10 Neilson RH, Robert H, Ji J, Narayan-Sarathy S, Oxley J, Smith Jr DW. Synthesis and characterization of new trifluorovinyl ether derivatives of phosphorus and silicon. Book of Abstracts, 213th ACS National Meeting, San Francisco; April 13–17 1997. Babb, 1998, Perfluorocyclobutane aromatic ether polymers. III. Synthesis and thermal stability of a thermoset polymer containing triphenylphosphine oxide, J Appl Polym Sci, 69, 2005, 10.1002/(SICI)1097-4628(19980906)69:10<2005::AID-APP12>3.0.CO;2-0 Boone, 1998, A new aromatic perfluorocyclobutane polymer: synthesis and thermal characterization of 1,3,5-tris[(4-trifluorovinyloxy)phenyl]benzene, Polym Prepr (Am Chem Soc, Div Polym Chem), 39, 812 Rizzo, 1999, Perfluorocyclobutane-containing silarylene–siloxane polymers with pendant trifluoropropyl groups, Polym Prepr (Am Chem Soc, Div Polym Chem), 40, 874 Rizzo, 2000, Synthesis and thermal properties of fluorosilicones containing perfluorocyclobutane rings, Polymer, 41, 5125, 10.1016/S0032-3861(99)00579-0 Desmarteau, 1995, Novel perfluorinated ionomers and ionenes, J Fluorine Chem, 72, 203, 10.1016/0022-1139(94)00408-8 Desmarteau, 1999, Synthesis and properties of new bis[(perfluoroalkyl)sulfonyl]imide ionomers for fuel cells, Polym Mater Sci Eng (Am Chem Soc, Div PMSE), 80, 598 Creager, 1999, New bis[(perfluroralkyl)sulfonyl]imide ionomers for PEM fuel cells, Polym Mater Sci Eng (Am Chem Soc Div PMSE), 80, 600 Creager, 1999, Equivalent weight and crystallinity effects on water content and proton conductivity in bis[(perfluoroalkyl)sulfonyl]imide-based ionomers, Electrochem Solid State Lett, 2, 434, 10.1149/1.1390862 Souzy, 2004, Synthesis of functional polymers—vinylidene fluoride based fluorinated copolymers and terpolymers bearing bromo-aromatic side-group, J Polym Sci Part A: Polym Chem, 42, 5077, 10.1002/pola.20324 Souzy R, Ameduri B, Boutevin B, Capron P, Marsacq D, Gebel G. Proton-conducting polymer electrolyte membranes based on fluoropolymers incorporating perfluorovinyl ether sulfonic acids—synthesis and characterizations, fuel cell—from fundamentals to systems; in press. Chapiro, 1962 Geymer, 1972, vol. 1(1) Mandelkern, 1972, vol. 1(13) Florin, 1972, Radiation chemistry of fluorocarbon polymers, vol. 11, 317 Okamoto, 1987, vol. 29 Ivanov, 1992 Singh, 1992 Lyons BJ. The crosslinking of fluoropolymers with ionising radiation: a review. In: Second international conference on radiation processing for plastics and rubbers, Chantembury, UK; March 1984. p. 1–8. Lyons, 1997, The radiation crosslinking of fluoropolymers, 335 Uyama, 1998, Surface modification of polymers by grafting, Adv Polym Sci, 137, 1, 10.1007/3-540-69685-7_1 Gupta, 1994, Proton-exchange membranes by radiation-induced graft copolymerization of monomers into Teflon-FEP films, Chimia, 48, 127 Forsythe, 2000, Radiation chemistry of fluoropolymers, Prog Polym Sci, 25, 101, 10.1016/S0079-6700(00)00008-3 Dargaville, 2003, High energy radiation grafting of fluorpolymers, Prog Polym Sci, 28, 1355, 10.1016/S0079-6700(03)00047-9 Drysdale, 1998, Free-radical grafting of polymers with fluorocarbon compouds and products therefrom, Int Demand WO, 31, 716 Wang, 2003, A simple transformation of polyethylenes to environementally benign acid catalysts and lithium conductive polymeric electrolytes, Macromolecules, 22, 8205 Robin, 2004, Overview on the use of ozone in the synthesis of new polymers and the modification of polymers, Adv Polym Sci, 167, 35, 10.1007/b12304 Liu, 2001, Synthesis, characterization and electrochemical transport properties of the poly(ethyleneglycol)-grafted-poly(vinylidene fluoride) nanoporous membranes, React Funct Polym, 47, 201, 10.1016/S1381-5148(01)00030-X Tarascon, 1996, Performance Bellcore's plastic rechargeable Li-ion batteries, Solid State Ionics, 86, 49, 10.1016/0167-2738(96)00330-X Capiglia, 1999, Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolyte, Solid State Ionics, 118, 73, 10.1016/S0167-2738(98)00457-3 Liang, 2003, Synthesis and characteritics of radiation-grafted membranes for fuel cell electrolytes, Polym Int, 52, 1300, 10.1002/pi.1220 Nasef, 2000, Thermal stability of radiation grafted PTFE-g-polystyrene sulfonic acid membranes, Polym Degrad Stab, 68, 231, 10.1016/S0141-3910(00)00005-7 Nasef, 2000, Radiation-induced grafting of styrene onto poly(tetrafluoroethylene) films. Part. II. Properties of the grafted and sulfonated membranes, Polym Int, 49, 1572, 10.1002/1097-0126(200012)49:12<1572::AID-PI545>3.3.CO;2-O Nasef, 2000, XPS studies of radiation grafted PTFE-g-polystyrene sulfonic acid membranes, J Appl Polym Sci, 76, 336, 10.1002/(SICI)1097-4628(20000418)76:3<336::AID-APP9>3.0.CO;2-E Nasef, 2000, Radiation-induced grafting of styrene onto poly(tetrafluoroethylene) (PTFE) films. I. Effect of grafting conditions and properties of the grafted films, Polym Int, 49, 399, 10.1002/(SICI)1097-0126(200004)49:4<399::AID-PI393>3.0.CO;2-W Guzman-Garcia, 1992, Analysis of radiation grafted membranes for fuel cell electrolytes, J Appl Electrochem, 22, 204, 10.1007/BF01030179 Turmanova, 1996, Study of the structure of polyethylene and poly(tetrafluoroethylene) radiation grafted ion-exchange copolymers, Macromol Chem Phys, 197, 2973, 10.1002/macp.1996.021970929 Kostov, 1997, Radiation-initiated graft copolymerization of 4-vinylpyridine onto polyethylene and polytetrafluoroethylene films and anion-exchange membranes therefrom, J Appl Polym Sci, 64, 1469, 10.1002/(SICI)1097-4628(19970523)64:8<1469::AID-APP3>3.0.CO;2-F Machi S, Sugo T, Sugishitu A. Ion-exchange membrane. Japanese Patent 7,808,692; 1978 (Japan Atomic Energy Research Institute). Gupta, 1994, Property–structure correlations, Polym Adv Technol, 5, 193 Holmberg, 1996, Structure and properties of sulfonated poly[(vinylidene fluoride)-g-stryrene] porous membranes, J Mater Chem, 6, 1309, 10.1039/JM9960601309 Hietala, 1997, Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes, J Mater Chem, 7, 721, 10.1039/a607675k Ennari, 1999, New polymer electrolyte membranes for low temperature fuel cells, Macromol Symp, 146, 41, 10.1002/masy.19991460108 Flint, 1997, Investigation of the radiation-grafted PVDF-g-polystyrene sulfonic acid ion exchange membranes for use in hydrogen oxygen fuel cells, Solid State Ionics, 97, 299, 10.1016/S0167-2738(97)00037-4 Danks, 2002, Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs, J Mater Chem, 12, 3371, 10.1039/b208627a Danks, 2003, Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells, J Mater Chem, 13, 712, 10.1039/b212164f Horsfall, 2001, Fuel cell performance of radiation-grafted sulfonic acid membranes, Fuel Cells, 1, 186, 10.1002/1615-6854(200112)1:3/4<186::AID-FUCE186>3.0.CO;2-A Horsfall, 2002, Comparison of fuel cell performance of selected fluoropolymer and hydrocarbon based grafted copolymers incorporating acrylic acid and styrene sulfonic acid, Polym Adv Technol, 13, 381, 10.1002/pat.202 Horsfall, 2003, Synthesis and characterization of acrylic acid-grafted hydrocarbon and fluorocarbon polymers with simultaneous or mutual grafting technique, J Appl Polym Sci, 87, 230, 10.1002/app.11358 Patri, 2004, Polym Adv Technol, 15, 270, 10.1002/pat.472 Rouilly, 1993, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto Teflon-FEP films. Synthesis and characterization, J Membr Sci, 81, 89, 10.1016/0376-7388(93)85033-S Gupta, 1994, Cation exchange membranes by pre-irradiation grafing of styrene into FEP films. I. Influence of synthesis conditions, J Polym Sci Part A: Polym Chem, 32, 1931, 10.1002/pola.1994.080321016 Gupta, 1994, Proton-exchange membranes by radiation grafting of styrene onto FEP films. II. Mechanism of thermal degradation in copolymer membranes, J Appl Polym Sci, 51, 1659, 10.1002/app.1994.070510916 Nasef, 2000, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto poly(tetrafluorethylene-co-hexafluoropropylene) films. II. Properties of sulfonated membranes, J Appl Polym Sci, 78, 2443, 10.1002/1097-4628(20001227)78:14<2443::AID-APP30>3.0.CO;2-E Nasef, 2000, Proton exchange membranes prepared by simultaneous radiation grafting of styrene onto (tetrafluoroethylene-co-hexafluoropropylene), J Appl Polym Sci, 76, 220, 10.1002/(SICI)1097-4628(20000411)76:2<220::AID-APP11>3.0.CO;2-M Stone C, Steck AE, Choudhury B. Graft fluoropolymer membranes and ion-exchange membranes formed therefrom. US Patent 0,137,806; 2002 (Ballard Power System). Herman, 2003, The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimization of the experimental conditions and characterization, J Membr Sci, 218, 147, 10.1016/S0376-7388(03)00167-4 Scott, 2000, Performance of the direct methanol fuel cell with radiation-grafted polymer membranes, J Membr Sci, 171, 119, 10.1016/S0376-7388(99)00382-8 Arico, 2003, Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells, J Power Sour, 123, 107, 10.1016/S0378-7753(03)00528-7 Nasef, 1999, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. I. Preparation and characterization of the graft copolymer, J Appl Polym Sci, 73, 2095, 10.1002/(SICI)1097-4628(19990912)73:11<2095::AID-APP5>3.0.CO;2-5 Nasef, 2000, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. II. Characterization of sulfonated graft copolymer membranes, J Appl Polym Sci, 76, 1, 10.1002/(SICI)1097-4628(20000404)76:1<1::AID-APP1>3.0.CO;2-4 Nasef, 2000, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. III. Thermal stability of the membranes, J Appl Polym Sci, 77, 1877, 10.1002/1097-4628(20000829)77:9<1877::AID-APP3>3.0.CO;2-X Nasef, 2000, Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. IV. Morphological investigations using X-ray photoelectron spectroscopy, J Appl Polym Sci, 77, 2455, 10.1002/1097-4628(20000912)77:11<2455::AID-APP14>3.0.CO;2-5 Nasef, 2002, Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelectron spectroscopy, J New Mater Electrochem Syst, 5, 183 Hietala, 1998, Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride), J Mater Chem, 8, 1127, 10.1039/a708288f Hietala S, Paronen M, Holmberg S, Näsman J, Juhanoja J, Karjalainen M, et al. Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly (rinylidene fluoride). J Polym Sci Part A Polym chem 1999;37(12):1741–53. Hietala, 1999, Water sorption and diffusion coefficients of protons and water in PVDF-g-PSSA polymer electrolyte membranes, J Polym Sci Part B: Polym Phys, 37, 2893, 10.1002/(SICI)1099-0488(19991015)37:20<2893::AID-POLB9>3.0.CO;2-4 Jokela, 2002, Effect of the initial matrix material on the structure of radiation-grafted ion-exchange membranes: wide-angle and small-angle X-ray scattering studies, J Polym Sci Part B: Polym Phys, 40, 1539, 10.1002/polb.10217 Holmberg, 1998, Synthesis and properties of sulfonated and crosslinked poly[(vinylidene fluoride)-graft-styrene] membranes, Polym Adv Technol, 9, 121, 10.1002/(SICI)1099-1581(199802)9:2<121::AID-PAT724>3.0.CO;2-M Elomaa, 2000, The state of water and the nature of ion clusters in crosslinked proton conducting membranes of styrene grafted and sulfonated poly(vinylidene fluoride), J Mater Chem, 10, 2678, 10.1039/b006735k Kallio, 2003, Effects of a fuel cell test on the structure of irradiation grafted ion exchange membranes based on different fluoropolymers, J Appl Electrochem, 33, 505, 10.1023/A:1024449228157 Gode, 2003, Membrane durability in a proton exchange membrane fuel cell studied using PVDF based radiation grafted membranes, Fuel Cells, 3, 21, 10.1002/fuce.200320239 Paronen, 2003, Preparation of proton conducting membranes by direct sulfonation. 1. Effect of radical and radical decay on the sulfonation of polyvinylidene fluoride film, Chem Mater, 15, 4447, 10.1021/cm021022i Holmberg, 2002, Synthesis of proton-conducting membranes by the utilization of preirradiation grafting and atom transfer radical polymerization techniques, J Polym Sci Part A: Polym Phys, 40, 591, 10.1002/pola.10146 Matyjaszewski, 2002, Atom transfer radical polymerization, Chem Rev, 101, 2921, 10.1021/cr940534g Brack, 1998, Modification and characterization of thin polymer films for electrochemical applications, Macromol Symp, 126, 25, 10.1002/masy.19981260105 Brack, 2000, Grafting of preirradiated poly(ethylene-alt-tetrafluoroethylene) films with styrene: influence of base polymer film properties and processing parameters, J Mater Chem, 10, 1795, 10.1039/b001851l Jarvis, 2001, Use of grafted PVDF-based polymers in lithium batteries, J Power Sour, 97–98, 664, 10.1016/S0378-7753(01)00696-6 (b) Coowar F, Kronfli E. Microporous membranes for solid electrolytes for lithium cells manufactured by casting vinylidene fluoride polymer solutions containing nonsolvents for polymers and slowly evaporating the liq. phase Internat. Demand WO 2001048063; 2001. Mislavsky, 1993, Synthesis, properties, and applications of composite materials based on grafted copolymers of perfluoropolymers and perfluorinated monomers with functional groups, Polym Prepr (Am Chem Soc, Polym Div), 34, 377 Mislavsky, 1997, Fluorinated polymers with functional groups. Synthesis and applications, vol. 7, 91 Hintzer, 1997, Modified polytetrafluoroethylene—the second generation, vol. 12, 239 Bozzi, 1987, The nature of the initiating centers for grafting in air-irradiated perfluoro polymers, Eur Polym J, 23, 255, 10.1016/0014-3057(87)90085-1 Bozzi, 1988, Synthesis of permselective membranes by grafting acrylic acid into air-irradiated Teflon FEP films, Radiat Phys Chem, 32, 193 Turmanova, 1997, Radiation grafting of acrylic acid onto polytetrafluoroethylene films for glucose oxidase immobilization and its application in membrane biosensor, J Membr Sci, 127, 1, 10.1016/S0376-7388(96)00277-3 Hegazy, 1981, Radiation grafting of acrylic acid onto fluorine-containing polymers. I. Kinetic study of preirradiation grafting onto poly(tetrafluoroethylene), J Appl Polym Sci, 26, 3117, 10.1002/app.1981.070260925 Omichi, 1982, Synthesis of ion-exchange membranes by radiation-induced multiple grafting of methyl α,β,β-trifluoroacrylate, J Polym Sci: Polym Chem Ed, 20, 521, 10.1002/pol.1982.170200225 Omichi, 1984, Synthesis of ion-exchange by cografting methyl α,β,β-trifluoroacrylate and propylene, J Polym Sci: Polym Chem Ed, 22, 1775, 10.1002/pol.1984.170220721 Omichi, 1985, Effect of mixed monomers on the synthesis of ion-exchange membranes by radiation-induced grafting, J Appl Polym Sci, 30, 1277, 10.1002/app.1985.070300331 Bex, 1968, Preparation of semipermeable membranes with remarkable properties by the radiochemical grafting of poly(tetrafluoroethylene) films, J Polym Sci, Polym Symp, 22, 493, 10.1002/polc.5070220140 Chapiro, 1973, Solvent effects on radiochemical grafting of 4-vinylpyridine onto poly(tetrafluoroethylene)films, Eur Polym J, 9, 975, 10.1016/0014-3057(73)90074-8 Burillo, 1986, Radiochemical grafting of N-vinylpyrrolidone into poly(tetrafluoroethylene) films, Eur Polym J, 22, 653, 10.1016/0014-3057(86)90164-3 Kerbow, 1997, Ethylene–tetrafluoroethylene copolymer resins, vol. 15, 301 Kostov, 1991, Synthesis of hydrophilic ion-exchange fluoroplymers containing sulpho- and both sulpho- and carboxyl groups, Eur Polym J, 27, 1331, 10.1016/0014-3057(91)90230-L Kostov, 1993, Radiation initiated grafting of acrylic acid onto tetrafluoroethylene–ethylene copolymers, J Appl Polym Sci, 47, 361, 10.1002/app.1993.070470216 Kostov, 1993, Properties of cation-exchange membranes prepared by radiation grafting of acrylic acid onto tetrafluoroethylene-ethylene copolymers, J Appl Polym Sci, 47, 1269, 10.1002/app.1993.070470715 Kaur, 2002, Radiation induced graft copolymerization of methyl acrylate and ethyl acrylate onto poly(tetrafluoroethylene-co-ethylene) film, Polym Polym Compos, 10, 391 Ellinghorst, 1981, Radiation initiated grafting on fluoro polymers for membrane preparation, Radiat Phys Chem, 18, 889, 10.1016/0146-5724(81)90279-X Ellinghorst, 1983, Radiation-initiated grafting of polymer films—an alternative technique to prepare membranes for various separation problems, Radiat Phys Chem, 22, 635, 10.1016/0146-5724(83)90073-0 Becker, 2002, Proton exchange membranes by irradiation-induced grafting of styrene onto FEP and ETFE: influences of the crosslinker N,N-methylene-bis-acrylamide, Chem Eng Technol, 25, 373, 10.1002/1521-4125(200204)25:4<373::AID-CEAT373>3.0.CO;2-X Horsfall, 2002, Proton exchange membranes by irradiation-induced grafting of styrene onto FEP and ETFE: influences of the crosslinker N,N-methylene-bis-acrylamide, Eur Polym J, 38, 1671, 10.1016/S0014-3057(02)00031-9 Chuy, 2000, Electrochemical characterization of ethylenetetrafluoroethylene-g-polystyrenesulfonic acid solid polymer electrolytes, J Electrochem Soc, 147, 4453, 10.1149/1.1394085 Brack, 1998, Radiation grafting of ETFE and FEP films: base polymer film effects, Polym Prepr (Am Chem Soc, Div Polym Chem), 39, 976 Brack HP, Bonorand L, Buhrer HG, Scherer GG. Radiation grafting of ETFE and FEP films: base polymer film effect, Book of Abstracts, 216th ACS National Meeting Boston; 23–27.08.1998, Poly-517. Brack, 1998, Radiation processing of fluoropolymer films, Polym Prepr (Am Chem Soc, Div Polym Chem), 39, 897 Brack, 2003, A contact angle investigation of the surface properties of selected proton-conducting radiation-grafted membranes, J Membr Sci, 214, 1, 10.1016/S0376-7388(02)00390-3 Pozzoli, 1997, Melt processable perfluoropolymers, 373 Florin, 1961, Gamma irradiation of fluorocarbon polymers, J Res Natl Bureau Stand A, 65, 375, 10.6028/jres.065A.038 Lovejoy, 1965, Chemistry of radiation cross-linking of branched fluorocarbon resins, J Appl Polym Sci, 9, 401, 10.1002/app.1965.070090201 Rosenberg, 1992, Low dose gamma-irradiation of some fluoropolymers: effect of polymer chemical structure, J Appl Polym Sci, 45, 783, 10.1002/app.1992.070450504 Bhattacharya, 1994, Preparation of polypyrrole composite with acrylic acid-grafted tetrafluoroethylene-hexafluoropropylene (Teflon-FEP) copolymer, Synth Met, 65, 35, 10.1016/0379-6779(94)90290-9 Hegazy, 1982, The study on radiation grafting of acrylic acid onto fluorine-containing polymers. III. Kinetic study of preirradiation grafting onto poly(tetrafluoroethylene-hexafluoropropylene), J Appl Polym Sci, 27, 535, 10.1002/app.1982.070270217 Hegazy, 1983, The study on radiation grafting of acrylic acid onto fluorine-containing polymers. IV. Properties of membrane obtained by preirradiation grafting onto poly(tetrafluoroethylene-hexafluoropropylene), J Appl Polym Sci, 28, 1465, 10.1002/app.1983.070280420 Gen, 1987, Preparation of charged micro-mosaic membrane via radiation-induced grafting of styrene and methyl methacrylate onto Teflon FEP films, Desalination, 62, 265, 10.1016/0011-9164(87)87027-3 Nasef, 2000, Thermal degradation behavior of radiation grafted FEP-g-polystyerne sulfonic acid membranes, Polym Degrad Stab, 70, 497, 10.1016/S0141-3910(00)00146-4 Nasef, 2000, Surface investigations of radiation grafted FEP-g-polystyrene sulfonic acid membranes using XPS, J New Mater Electrochem Syst, 3, 309 Gupta, 1996, Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. Properties of copolymer membranes, J Polym Sci Part A: Polym Chem, 34, 1873, 10.1002/(SICI)1099-0518(19960730)34:10<1873::AID-POLA4>3.0.CO;2-Q Gupta, 1998, Angew Makromol Chem, 256, 81, 10.1002/(SICI)1522-9505(19980401)256:1<81::AID-APMC81>3.0.CO;2-T Gupta, 1993, Materials research aspects of organic solid proton conductors, Solid State Ionics, 61, 213, 10.1016/0167-2738(93)90356-8 Buchi, 1995, Materials research aspects of organic solid proton conductors, Electrochim Acta, 40, 145 Gubler L. Kuhn H, Schmidt TJ; Scherer GG, Brack HP, Simbeck K. Performance and durability of membrane electrode assemblies based on radiation-grafted fep-g-polystyrene membranes. Fuel Cell 2004;4:196–207. Hintzer, 1997, Melt processable tetrafluoroethylene-perfluoropropylvinyl ether copolymers (PFA), 223 Dargaville, 2003, Cross-linking of PFA by electron beam, an investigation of the thermal and tensile properties of PFA following γ-radiolysis, Macromolecules, 36, 7132, 10.1021/ma0302309 Cardona, 2002, Copolymers obtained by the radiation-induced grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) substrates. 1. Preparation and structural investigation, Macromolecules, 35, 355, 10.1021/ma0022295 Bahar B, Hobson AR, Kolde JA, Zuckerbrod D. Ultra-thin integral composite membrane. US Patent 5,547,551; 1996 (W.L. Gore). Terada N, Hommura S. Electrolyte membrane for solid polymer type fuel cell and producing method thereof. European Patent 1,139,472; 2001 (Asahi Glass, Co. Ltd). Proceedings of the ‘Solid State Protonic Conductors 12’ Conference, Uppsala (Sweden); Solid State Ionics; in press. Ishisaki T, Kinoshita S. Membrane electrode assembly for solid polymer electrolyte fuel cells process and its production. European Patent 1263073 A1; 2002 (Asahi Glass Co. Ltd). Jung, 2002, Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, J Power Sour, 106, 173, 10.1016/S0378-7753(01)01053-9 Shao, 2004, Preparation and characterization of hybrid Nafion silica membrane doped with phosphotungstenic acid for high temperature operation of polymer electrolyte membrane fuel cell, J Membr Sci, 119, 43, 10.1016/j.memsci.2003.09.014 Bauer, 2004, Microstuctural characterization of Zr-phosphate-nafion membranes for direct methanol fuel cell (DMFC) applications, J Membr Sci, 233, 141, 10.1016/j.memsci.2004.01.010 Kim, 2003, Fabrication and characterization of heteropoly acid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications, J Membr Sci, 212, 263, 10.1016/S0376-7388(02)00507-0 Wainright, 1995, Acid-doped polybenzimidazoles: a new polymer electrolyte, J Electrochem Soc, 142, 121, 10.1149/1.2044337 Xiao, 2003, Synthesis and characterization of pyridine-based polybenzimidazoles as novel fuel cell membrane materials, Prepr Symp (Am Chem Soc, Div Fuel Chem), 48, 447 Liu F, Yi B, Xing D, Yu J, Zhang H. Nafion/PTFE composite membranes for fule cell applications. J Membr Sci 2003;212:213–23. Surya Prakash, 2004, High efficiency direct methanol fuel cell based on poly(styrene sulfonic) acid (PSSA)-poly(vinylidene fluoride) (PVDF) composite membranes, J Fluorine Chem, 125, 1217, 10.1016/j.jfluchem.2004.05.019 Staiti, 2001, Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cell, Solid State Ionics, 145, 101, 10.1016/S0167-2738(01)00919-5 Yang ZY. Fluorosulfonic acid organic polymers. Intern. Demand WO Patent 02/092,646 A1; 2002 (E.I. DuPont de Nemours). Wessel H, Bender M, Harth K, Fischer A, Hoelze M. Manufacture of electrocatalytic electrodes for polymer electrolyte membrane fuel cells to prevent peroxide generation. European Pat 1,271,682; 2003 (BASF). Park JK, Lee YG, Eom JY. Method of producing polymer electrolyte membrane fuel cell. US Patent 0,324,235 A1; 2003 (Roberts Abokhair Mardula).