Khám phá chức năng của mạng lưới đồng biểu hiện xác định một mối liên kết để điều chỉnh nồng độ protein và axit citric trong môi trường nuôi cấy chìm của Aspergillus niger

Springer Science and Business Media LLC - Tập 6 - Trang 1-18 - 2019
Timothy C. Cairns1,2, Claudia Feurstein1,2,3, Xiaomei Zheng1,2,4, Li Hui Zhang1,2,5, Ping Zheng1,2,4, Jibin Sun1,2,4, Vera Meyer1,2,3,4
1Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People’s Republic of China
2Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, People’s Republic of China
3Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
4University of Chinese Academy of Sciences, Beijing, China
5College of Biotechnology, Tianjin University of Science &Technology, Tianjin, China

Tóm tắt

Các nhà máy tế bào nấm filamentous được sử dụng để sản xuất nhiều protein, enzyme và axit hữu cơ. Quá trình tiết protein và sự phát triển filamentous có mối liên hệ chặt chẽ tại đầu sợi. Thêm vào đó, cả hai quá trình này đều yêu cầu ATP và tiền chất acid amin xuất phát từ chu trình axit citric. Mặc dù có sự liên kết này giữa sản xuất axit hữu cơ và tiết protein/sự phát triển filamentous, nhưng có rất ít nghiên cứu trên nấm đã xác định được các gen có thể đồng thời ảnh hưởng đến cả ba quá trình. Chúng tôi đã áp dụng một phương pháp sàng lọc mới của mạng lưới đồng biểu hiện toàn cầu trong nhà máy tế bào Aspergillus niger để xác định các gen ứng viên có thể đồng thời ảnh hưởng đến hình thái vĩ mô và quá trình lên men protein/axit hữu cơ. Điều này đã xác định các gen dự đoán mã hóa protein kích hoạt GTPase ArfA (GAP, AgeB) và các yếu tố trao đổi nucleotide guanine ArfA (GEFs SecG và GeaB) có sự đồng biểu hiện với các gen của chu trình axit citric. Do đó, chúng tôi đã sử dụng chỉnh sửa gen dựa trên CRISPR để đặt hệ thống biểu hiện Tet-on có thể titrate phía thượng lưu của ageB, secG và geaB trong A. niger. Phân tích chức năng cho thấy ageB và geaB là thiết yếu trong khi secG là không thiết yếu cho sự phát triển filamentous sớm. Tiếp theo, mức độ biểu hiện gen đã được titrate trong các điều kiện nuôi cấy chìm cho việc sản xuất protein hoặc axit hữu cơ. Các yếu tố điều hòa ArfA đóng vai trò khác nhau và phụ thuộc vào văn hóa trong việc hình thành viên tụ. Đáng chú ý, mức độ biểu hiện của ageB hoặc geaB có tác động lớn đến tiết protein, trong khi secG là không thiết yếu. Ngược lại, mức độ biểu hiện giảm của mỗi yếu tố điều hòa ArfA dự đoán dẫn đến sự vắng mặt của axit citric trong môi trường nuôi cấy. Cuối cùng, việc titrate biểu hiện của bất kỳ GEF nào cũng dẫn đến sự gia tăng nồng độ axit oxaloacetic trong dịch siêu tách. Dữ liệu của chúng tôi gợi ý rằng Golgi có thể đóng vai trò mà chưa được đánh giá đúng mức trong việc điều chỉnh nồng độ axit hữu cơ trong các ứng dụng công nghiệp, và điều này phụ thuộc vào SecG, GeaB và AgeB trong A. niger. Các dữ liệu này có thể dẫn đến những hướng đi mới cho việc tối ưu hóa dòng giống trong nấm filamentous nhằm cải thiện sản lượng protein và axit hữu cơ.

Từ khóa

#nấm filamentous #Proteins #axit hữu cơ #mạng lưới đồng biểu hiện #CRISPR #Aspergillus niger

Tài liệu tham khảo

Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnol Biofuels. 2019;12:77. https://doi.org/10.1186/s13068-019-1400-4. Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns CT, et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biol Biotechnol. 2016;3:1–17. https://doi.org/10.1186/s40694-016-0024-8. Tong Z, Zheng X, Tong Y, Shi Y-C, Sun J. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact. 2019;18:28. https://doi.org/10.1186/s12934-019-1064-6. Cairns TC, Nai C, Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol Biotechnol. 2018;5:13. https://doi.org/10.1186/s40694-018-0054-5. Yin X, Shin HD, Li J, Du G, Liu L, Chen J. Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Sci Rep. 2017;7:1040. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, et al. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res. 2012;40:D675–81. https://doi.org/10.1093/nar/gkr918. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–704. https://doi.org/10.1093/nar/gkt1183. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, et al. The Ensembl gene annotation system. Database. 2016. https://doi.org/10.1093/database/baw093. Paege N, Jung S, Schäpe P, Müller-Hagen D, Ouedraogo JP, Heiderich C, et al. A transcriptome meta-analysis proposes novel biological roles for the antifungal protein anafp in Aspergillus niger. PLoS ONE. 2016;11:e0165755. Schäpe P, Kwon MJ, Baumann B, Gutschmann B, Jung S, Lenz S, et al. Updating genome annotation for the microbial cell factory Aspergillus niger using gene co-expression networks. Nucleic Acids Res. 2019;47:2. https://doi.org/10.1093/nar/gky1183. Hsu C-L, Juan H-F, Huang H-C. Functional analysis and characterization of differential coexpression networks. Sci Rep. 2015;5:13295. https://doi.org/10.1038/srep13295. van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression analysis for functional classification and gene–disease predictions. Brief Bioinform. 2017. https://doi.org/10.1093/bib/bbw139. Brandl J, Aguilar-Pontes MV, Schäpe P, Noerregaard A, Arvas M, Ram AFJ, et al. A community-driven reconstruction of the Aspergillus niger metabolic network. Fungal Biol Biotechnol. 2018;5:16. https://doi.org/10.1186/s40694-018-0060-7. Takeshita N, Fischer R. On the role of microtubules, cell end markers, and septal microtubule organizing centres on site selection for polar growth in Aspergillus nidulans. Fungal Biol. 2011;115:506–17. Takeshita N, Mania D, Herrero S, Ishitsuka Y, Nienhaus GU, Podolski M, et al. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. J Cell Sci. 2013;126(Pt 23):5400–11. Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, et al. Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Sci Adv. 2015;1:e1500947. Steinberg G, Peñalva MA, Riquelme M, Wösten HA, Harris SD. Cell biology of hyphal growth. Microbiol Spectr. 2017;5:1–34. https://doi.org/10.1128/microbiolspec.FUNK-0034-2016. Roth MG. Snapshots of ARF1: implications for mechanisms of activation and inactivation. Cell. 1999;97:149–52. Lambert AA, Perron MP, Lavoie E, Pallotta D. The Saccharomyces cerevisiae Arf3 protein is involved in actin cable and cortical patch formation. FEMS Yeast Res. 2007;7:782–95. Suda Y, Kurokawa K, Nakano A. Regulation of ER-Golgi transport dynamics by GTPases in budding yeast. Front Cell Dev Biol. 2018;5:122. https://doi.org/10.3389/fcell.2017.00122. Fiedler MRM, Cairns TC, Koch O, Kubisch C, Meyer V. Conditional expression of the small GTPase ArfA impacts secretion, morphology, growth, and actin ring position in Aspergillus niger. Front Microbiol. 2018;9:878. https://doi.org/10.3389/fmicb.2018.00878. Gillingham AK, Munro S. The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol. 2007;23:579–611. Hsu J-W, Lee F-JS. Arf3p GTPase is a key regulator of Bud2p activation for invasive growth in Saccharomyces cerevisiae. Mol Biol Cell. 2013;24:2328–39. https://doi.org/10.1091/mbc.e13-03-0136. Zheng X, Zheng P, Zhang K, Cairns TC, Meyer V, Sun J, et al. 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS Synth Biol. 2018. https://doi.org/10.1021/acssynbio.7b00456. Wanka F, Cairns T, Boecker S, Berens C, Happel A, Zheng X, et al. Tet-On, or Tet-Off, that is the question: advanced conditional gene expression in Aspergillus. Fungal Genet Biol. 2015. https://doi.org/10.1016/j.fgb.2015.11.003. Hernández-González M, Bravo-Plaza I, de los Ríos V, Pinar M, Pantazopoulou A, Peñalva MA. COPI localizes to the early Golgi in Aspergillus nidulans. Fungal Genet Biol. 2019. https://doi.org/10.1016/j.fgb.2018.12.003. Pantazopoulou A, Peñalva MA. Organization and dynamics of the Aspergillus nidulans golgi during apical extension and mitosis. Mol Biol Cell. 2009;20:4335–47. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, et al. The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Research. 2014;42:D705–10. Ackema KB, Hench J, Böckler S, Wang SC, Sauder U, Mergentaler H, et al. The small GTPase Arf1 modulates mitochondrial morphology and function. EMBO J. 2014;33:2659–75. Kuai J, Kahn RA. Assays of ADP-ribosylation factor function. In: Iyengar R, Hildebrandt M, editors. G Protein pathways. New York: Academic Press; 2002. p. 359–70. https://doi.org/10.1016/S0076-6879(02)45029-X. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 2012;40:D700–5. Sata M, Donaldson JG, Moss J, Vaughan M. Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. Proc Natl Acad Sci USA. 1998;95:4204–8. https://doi.org/10.1073/pnas.95.8.4204. Meyer V, Wanka F, van Gent J, Arentshorst M, van den Hondel CA, Ram AF. Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl Env Microbiol. 2011;77:2975–83. https://doi.org/10.1128/AEM.02740-10. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. Krishnan K, Feng X, Powers-Fletcher MV, Bick G, Richie DL, Woollett LA, et al. Effects of a defective endoplasmic reticulum-associated degradation pathway on the stress response, virulence, and antifungal drug susceptibility of the mold pathogen Aspergillus fumigatus. Eukaryot Cell. 2013;12:512–9. Hartmann T, Sasse C, Schedler A, Hasenberg M, Gunzer M, Krappmann S. Shaping the fungal adaptome—stress responses of Aspergillus fumigatus. Int J Med Microbiol. 2011;301:408. Cairns TC, Feurstein C, Zheng X, Zheng P, Sun J, Meyer V. A quantitative image analysis pipeline for the characterization of filamentous fungal morphologies as a tool to uncover targets for morphology engineering: a case study using aplD in Aspergillus niger. Biotechnol Biofuels. 2019;12:149. https://doi.org/10.1186/s13068-019-1473-0. Wucherpfennig T, Lakowitz A, Driouch H, Krull R, Wittmann C. Customization of Aspergillus niger morphology through addition of talc micro particles. J Vis Exp. 2012. https://doi.org/10.3791/4023. Kurt T, Marbà-Ardébol A-M, Turan Z, Neubauer P, Junne S, Meyer V. Rocking Aspergillus: morphology-controlled cultivation of Aspergillus niger in a wave-mixed bioreactor for the production of secondary metabolites. Microb Cell Fact. 2018;17:128. https://doi.org/10.1186/s12934-018-0975-y. Papagianni M, Mattey M, Berovǐ M, Kristiansen B. Aspergillus niger morphology and citric acid production in submerged batch fermentation: effects of culture pH, phosphate and manganese levels. Food Technol Biotechnol. 1999;37:165–71. Sun X, Wu H, Zhao G, Li Z, Wu X, Liu H, et al. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess Biosyst Eng. 2018. https://doi.org/10.1007/s00449-018-1932-1. Liu H, Zheng Z, Wang P, Gong G, Wang L, Zhao G. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum. Appl Microbiol Biotechnol. 2013;97:3363–72. Steiger MG, Rassinger A, Mattanovich D, Sauer M. Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metab Eng. 2019;52:224–31. https://doi.org/10.1016/j.ymben.2018.12.004. Tucey TM, Verma-Gaur J, Nguyen J, Hewitt VL, Lo TL, Shingu-Vazquez M, et al. The endoplasmic reticulum-mitochondrion tether ERMES orchestrates fungal immune evasion illuminating inflammasome responses to hyphal signals. mSphere. 2016;1:e00074. https://doi.org/10.1128/msphere.00074-16. Ackema KB, Prescianotto-Baschong C, Hench J, Wang SC, Chia ZH, Mergentaler H, et al. Sar1, a novel regulator of ER-mitochondrial contact sites. PLoS ONE. 2016;11:e0154280. Gómez R, Schnabel I, Garrido J. Pellet growth and citric acid yield of Aspergillus niger 110. Enzyme Microb Technol. 1988;10:188–91. Lu H, Liu X, Huang M, Xia J, Chu J, Zhuang Y, et al. Integrated isotope-assisted metabolomics and 13C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger. Microb Cell Fact. 2015;14:147. https://doi.org/10.1186/s12934-015-0329-y. Show PL, Oladele KO, Siew QY, Aziz Zakry FA, Lan JCW, Ling TC. Overview of citric acid production from Aspergillus niger. Front Life Sci. 2015;8:271–83. https://doi.org/10.1080/21553769.2015.1033653. Lu H, Cao W, Liu X, Sui Y, Ouyang L, Xia J, et al. Multi-omics integrative analysis with genome-scale metabolic model simulation reveals global cellular adaptation of Aspergillus niger under industrial enzyme production condition. Sci Rep. 2018;8:14404. Castillo S, Barth D, Arvas M, Pakula TM, Pitkänen E, Blomberg P, et al. Whole-genome metabolic model of Trichoderma reesei built by comparative reconstruction. Biotechnol Biofuels. 2016;9:252. https://doi.org/10.1186/s13068-016-0665-0. Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, et al. Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol. 2007;128:770–5. https://doi.org/10.1016/j.jbiotec.2006.12.021. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–61. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91. Meyer V, Ram AFJ, Punt PJ. Genetics, genetic manipulation, and approaches to strain improvement of filamentous fungi. Manual of industrial microbiology and biotechnology. 3rd ed. New York: Wiley; 2010. p. 318–29. Xie S, Shen B, Zhang C, Huang X, Zhang Y. SgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE. 2014;9:e100448. Wucherpfennig T, Hestler T, Krull R. Morphology engineering—osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Fact. 2011;10:58.