Functional equations for multi-signed Selmer groups
Tóm tắt
Từ khóa
Tài liệu tham khảo
Büyükboduk, K., Lei, A.: Coleman-adapted Rubin-Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties. Proc. Lond. Math. Soc. (3) 111(6), 1338–1378 (2015)
Büyükboduk, K., Lei, A.: Integral Iwasawa theory of Galois representations for non-ordinary primes (2015, preprint). arXiv:1511.06986
Colmez, P.: Théorie d’Iwasawa des représentations de de Rham d’un corps local. Ann. Math. (2) 148(2), 485–571 (1998)
Greenberg, R.: Iwasawa theory for $$p$$ p -adic representations. In: Algebraic number theory, Adv. Stud. Pure Math., vol. 17, pp. 97–137. Academic Press, Boston (1989)
Imai, H.: A remark on the rational points of abelian varieties with values in cyclotomic $$\mathbb{Z}_{p}$$ Z p -extensions. Proc. Jpn. Acad. 51, 12–16 (1975)
Kim, B.D.: The algebraic functional equation of an elliptic curve at supersingular primes. Math. Res. Lett. 15(1), 83–94 (2008)
Kobayashi, S.-I.: Iwasawa theory for elliptic curves at supersingular primes. Invent. Math. 152(1), 1–36 (2003)
Loeffler, D., Zerbes, S.L.: Iwasawa theory and $$p$$ p -adic $$L$$ L -functions over $$\mathbb{Z}_p^2$$ Z p 2 -extensions. Int. J. Number Theory 10(8), 2045–2095 (2014)
Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18, 183–266 (1972)
Perrin-Riou, B.: Théorie d’Iwasawa des représentations $$p$$ p -adiques sur un corps local. Invent. Math. 115(1), 81–161 (1994)
Sprung, F.E.I.: Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures. J. Number Theory 132(7), 1483–1506 (2012)
Sprung, F.E.I.: On pairs of $$p$$ p -adic $$L$$ L -functions for weight two modular forms (2016). arXiv:1601.00010