Functional domains and motifs of bacterial type III effector proteins and their roles in infection

Oxford University Press (OUP) - Tập 35 Số 6 - Trang 1100-1125 - 2011
Paul Dean1
1Institute of Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle Upon Tyne, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramovitch RB Martin GB (2005) AvrPtoB: a bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. FEMS Microbiol Lett 245: 1–8.

10.1073/pnas.0507892103

10.1083/jcb.129.2.367

10.1074/jbc.M303349200

10.1080/10408410490468795

10.1073/pnas.1010243107

10.1016/j.plipres.2004.09.002

10.1111/j.1462-5822.2005.00568.x

10.1016/j.femsle.2004.12.027

10.1016/j.cell.2005.10.031

10.1083/jcb.200705021

10.1073/pnas.96.22.12839

10.1105/tpc.105.036590

10.1073/pnas.0509393103

10.1371/journal.ppat.0030003

Arbeloa A Garnett J Lillington J Bulgin RR Berger CN Lea SM Matthews S Frankel G (2009) EspM2 is a RhoA guanine nucleotide exchange factor. Cell Microbiol 12: 654–664.

10.1371/journal.ppat.1000376

Ashida H Toyotome T Nagai T Sasakawa C (2007) Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol Microbiol 63: 680–693.

10.1046/j.1365-2958.2003.03666.x

Backert S Selbach M (2005) Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends Microbiol 13: 476–484.

10.1016/S0092-8674(00)80098-7

10.1016/S0014-5793(00)02045-7

10.1002/pro.5560070625

10.1016/j.micpath.2003.12.006

10.1093/emboj/19.13.3235

10.1046/j.1365-2958.2000.02021.x

Block A Guo M Li G Elowsky C Clemente TE Alfano JR (2009) The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity. Cell Microbiol 12: 318–330.

10.1126/science.1178811

Bos JL Rehmann H Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129: 865–877.

10.1074/jbc.M207901200

10.1093/emboj/18.21.5853

10.1099/mic.0.28995-0

10.1111/j.1462-5822.2004.00466.x

10.1034/j.1600-0854.2002.30604.x

10.1034/j.1600-0854.2003.40106.x

Brumlik MJ Buckley JT (1996) Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila . J Bacteriol 178: 2060–2064.

Buchanan SG Gay NJ (1996) Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Bio 65: 1–44.

10.1111/j.1365-2958.2004.04480.x

10.1073/pnas.0409468102

10.1126/science.1108633

10.1128/CMR.00013-07

Collier-Hyams LS Zeng H Sun J Tomlinson AD Bao ZQ Chen H Madara JL Orth K Neish AS (2002) Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway. J Immunol 169: 2846–2850.

Cunnac S Lindeberg M Collmer A (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12: 53–60.

10.1110/ps.037978.108

10.1111/j.1462-5822.2010.01469.x

10.1371/journal.ppat.1000961

10.1074/jbc.M605939200

10.1073/pnas.1230660100

10.1038/nsmb1346

10.1111/j.1365-2958.1994.tb01265.x

Dominguez R (2009) Actin filament nucleation and elongation factors – structure–function relationships. Crit Rev Biochem Mol 44: 351–366.

10.1074/jbc.M900519200

10.1074/jbc.M003009200

10.1046/j.1365-2958.2003.03588.x

10.1110/ps.34102

10.1074/jbc.M704797200

10.1038/45829

10.1073/pnas.90.6.2320

10.1038/nature05737

10.1016/j.chom.2009.04.008

10.1038/361730a0

10.1016/S0959-440X(98)80038-9

Gao J Liao J Yang GY (2009) CAAX-box protein, prenylation process and carcinogenesis. Am J Transl Res 1: 312–325.

10.1016/j.tcb.2006.11.004

10.1111/j.1462-5822.2004.00459.x

10.1128/IAI.72.1.546-558.2004

10.1021/bi801533k

10.1128/MMBR.68.4.771-795.2004

10.1038/ncb0901-856

10.1046/j.1365-2958.2003.03911.x

10.1046/j.1365-2958.2000.01870.x

10.1111/j.1365-313X.2005.02370.x

10.1046/j.1365-2958.1996.5251051.x

Ham JH Majerczak DR Nomura K Mecey C Uribe F He SY Mackey D Coplin DL (2009) Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Mol Plant Microbe In 22: 703–712.

10.1038/sj.embor.7400753

Hanks SK Quinn AM Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.

10.1128/IAI.70.3.1619-1622.2002

10.1128/IAI.71.7.4052-4058.2003

10.1016/S0092-8674(00)81442-7

10.1093/emboj/18.18.4926

Hennessy F Nicoll WS Zimmermann R Cheetham ME Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40–Hsp70 interactions. Protein Sci 14: 1697–1709.

10.1046/j.1432-1033.2002.03191.x

10.1042/BJ20020714

10.1073/pnas.0605443103

10.1083/jcb.200309161

10.1128/IAI.00635-10

10.1046/j.1365-2958.2003.03730.x

10.1529/biophysj.105.080259

10.1038/nsmb.1647

10.1073/pnas.92.7.2563

10.1016/j.chom.2009.01.010

Hung AY Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277: 5699–5702.

10.1111/j.1365-2958.2005.04477.x

10.1016/j.cell.2007.06.043

10.1126/science.1120131

10.1016/j.cub.2007.02.028

10.1073/pnas.0910943107

10.1073/pnas.0603044103

Juris SJ Rudolph AE Huddler D Orth K Dixon JE (2000) A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. P Natl Acad Sci USA 97: 9431–9436.

10.1046/j.1462-5822.2002.00182.x

10.1111/j.1365-2958.1996.tb02571.x

10.1126/science.1144956

10.1016/S0968-0004(98)01215-8

10.1046/j.1462-5822.2000.00082.x

Kenny B Valdivia R (2009) Host–microbe interactions: bacteria. Curr Opin Microbiol 12: 1–3.

10.1016/S0092-8674(00)80437-7

10.1046/j.1365-2958.2002.02952.x

10.1073/pnas.0504466102

10.1073/pnas.0500792102

10.1099/mic.0.2007/007872-0

10.1371/journal.pone.0005818

10.1091/mbc.E05-04-0367

10.1046/j.1365-2958.2003.03598.x

10.1111/j.1462-5822.2009.01356.x

10.1074/jbc.M301963200

10.1016/S0092-8674(03)00849-3

10.1111/j.1398-9219.2004.00179.x

10.1128/JB.187.10.3565-3571.2005

10.1111/j.1462-5822.2007.01065.x

10.1046/j.1365-2958.2001.02360.x

10.1038/sj.emboj.7601202

10.1128/JB.01702-07

10.1126/science.1138960

10.1073/pnas.0703196104

10.1046/j.1365-2958.2001.02271.x

Lossi NS Rolhion N Magee AI Boyle C Holden DW (2008) The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity. Microbiology 154: 2680–2688.

10.1038/35036395

10.1023/A:1022974710488

10.1016/S0014-5793(01)02356-0

10.1046/j.1462-5822.2002.00202.x

10.1111/j.1462-5822.2010.01503.x

10.1111/j.1365-2958.2005.04973.x

10.1016/j.mib.2008.12.005

10.1038/sj.emboj.7600359

10.1016/j.tim.2004.02.006

10.1128/IAI.00141-10

10.1128/IAI.00537-10

10.1371/journal.ppat.1000671

10.1128/IAI.00269-10

10.1046/j.1365-2958.1999.01651.x

10.1074/jbc.M009045200

10.1126/science.1178817

10.1126/science.1126867

Nagai T Abe A Sasakawa C (2005) Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J Biol Chem 280: 2998–3011.

10.1084/jem.20090494

10.1016/j.molcel.2007.04.025

10.1146/annurev.biochem.66.1.863

10.1093/emboj/cdf522

10.1016/S0092-8674(00)80846-6

10.1073/pnas.95.24.14057

10.1111/j.1462-5822.2004.00421.x

10.1128/IAI.73.10.6249-6259.2005

10.1016/j.chom.2008.08.012

10.1126/science.290.5496.1594

10.1111/j.1462-5822.2005.00660.x

Passmore LA Barford D (2004) Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379: 513–525.

10.1046/j.1365-2958.2000.01990.x

10.1093/emboj/16.9.2307

10.1074/jbc.M302472200

10.1146/annurev.biochem.70.1.503

10.1111/j.1462-5822.2007.01010.x

10.1016/j.cell.2006.06.056

Preston GM (2007) Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe 2: 291–294.

10.1084/jem.20100771

10.1128/IAI.73.1.573-582.2005

10.1128/IAI.74.5.2552-2561.2006

10.1016/j.febslet.2007.01.057

10.1074/jbc.M500076200

10.1038/nchembio834

10.1074/jbc.M109039200

Robert-Seilaniantz A Shan L Zhou JM Tang X (2006) The Pseudomonas syringae pv. tomato DC3000 type III effector HopF2 has a putative myristoylation site required for its avirulence and virulence functions. Mol Plant Microbe In 19: 130–138.

10.1016/j.chom.2007.02.002

10.1534/genetics.103.019638

10.1038/nature05966

Rossman KL Der CJ Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Bio 6: 167–180.

Rottger S Frischknecht F Reckmann I Smith GL Way M (1999) Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol 73: 2863–2875.

10.4049/jimmunol.176.10.6093

10.1074/jbc.274.43.30501

10.1046/j.1365-2958.2002.02912.x

10.1073/pnas.0610095104

10.1093/emboj/cdg517

10.1093/emboj/cdg290

10.1074/jbc.M302475200

Schmiel DH Wagar E Karamanou L Weeks D Miller VL (1998) Phospholipase A of Yersinia enterocolitica contributes to pathogenesis in a mouse model. Infect Immun 66: 3941–3951.

10.1105/tpc.12.12.2323

10.1016/S0092-8674(02)00766-3

Shao F Vacratsis PO Bao Z Bowers KE Fierke CA Dixon JE (2003) Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. P Natl Acad Sci USA 100: 904–909.

10.1128/IAI.72.12.6969-6977.2004

10.1038/nsmb.1511

10.1046/j.1365-2958.1998.01135.x

10.1128/IAI.71.8.4623-4632.2003

10.1111/j.1462-5822.2005.00563.x

10.1126/science.1194598

10.1371/journal.ppat.0020104

10.1074/jbc.M008187200

10.1111/j.1365-2958.1996.tb02497.x

10.1111/j.1462-5822.2006.00710.x

10.1038/370571a0

10.1074/jbc.M304290200

10.1046/j.1365-2958.2002.03139.x

Takemoto D Jones DA (2005) Membrane release and destabilization of Arabidopsis RIN4 following cleavage by Pseudomonas syringae AvrRpt2. Mol Plant Microbe In 18: 1258–1268.

10.1016/j.chom.2007.03.005

10.1038/ncb854

10.1046/j.1365-2958.2001.02258.x

10.1111/j.1462-5822.2009.01376.x

10.1094/MPMI-20-10-1250

10.1073/pnas.0604891103

10.1074/jbc.M101882200

Tran EJ Wente SR (2006) Dynamic nuclear pore complexes: life on the edge. Cell 125: 1041–1053.

10.1093/emboj/16.10.2717

10.1074/jbc.M610071200

Troisfontaines P Cornelis GR (2005) Type III secretion: more systems than you think. Physiology 20: 326–339.

10.1074/jbc.M407001200

10.1038/nature02857

10.1111/j.1365-313X.2007.03262.x

10.1016/j.bbapap.2003.11.004

10.1073/pnas.0809131106

Von Pawel-Rammingen U Telepnev MV Schmidt G Aktories K Wolf-Watz H Rosqvist R (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36: 737–748.

10.1111/j.1365-2958.2009.06608.x

10.1016/j.micpath.2006.02.001

10.1073/pnas.0904739107

10.1046/j.1462-5822.2000.00054.x

10.1038/83007

10.1128/IAI.00152-10

10.1073/pnas.95.23.13899

10.1126/science.1166382

10.1093/emboj/cdf319

10.1126/science.1133174

10.1111/j.1365-2958.2006.05407.x

Zhang ZY Clemens JC Schubert HL Stuckey JA Fischer MW Hume DM Saper MA Dixon JE (1992) Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase. J Biol Chem 267: 23759–23766.

10.1073/pnas.91.5.1624

10.1126/science.283.5410.2092

Zhu M Shao F Innes RW Dixon JE Xu Z (2004) The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. P Natl Acad Sci USA 101: 302–307.

Zhu W Yang B Chittoor JM Johnson LB White FF (1998) AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microbe In 11: 824–832.

10.1016/j.molcel.2007.11.011

10.1038/nsmb.1517

10.1128/IAI.00594-06

10.1111/j.1365-2958.2008.06524.x