Functional differential equations in Hilbert spaces driven by a fractional Brownian motion

Brahim Boufoussi1, Salah Hajji2, El Hassan Lakhel3
1Cadi Ayyad University
2Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
3Department of Mathematics, National School of Applied Sciences Safi, Cadi Ayyad University, Safi, Morocco

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fernique, X.: Regularité des trajectoires des fonctions aléatoires gaussiennes. In: Ecole d’été de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Mathematics, vol. 480, pp. 1–96 (1975)

Ferrante M., Rovira C.: Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2. Bernoulli 12(1), 85–100 (2006)

Ferrante, M., Rovira, C.: Convergence of delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1/2. arxiv.org/abs/0903.5498v1

Lyons T.: Differential equations driven by rough signals (I): an extension of an inequality of L. C. Young. Math. Res. Lett. 1, 451–464 (1994)

Mandelbrot B.B., Van Ness J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

Maslowski B., Nualart D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202(1), 277–305 (2003)

Neuenkirch A., Nourdin I., Tindel S.: Delay equations driven by rough paths. Electron. J. Probab. 13, 2031–2068 (2008)

Nualart D., Răşcanu A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002)

Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Yvendon (1993)

Young L.C.: An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

Zähle M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111, 333–374 (1998)