Functional conservation of CYCLOPS in crack entry legume Arachis hypogaea
Tài liệu tham khảo
Gamas, 2017, Cytokinins in symbiotic nodulation: when, where, what for?, Trends Plant Sci., 22, 792, 10.1016/j.tplants.2017.06.012
Kistner, 2002, Evolution of signal transduction in intracellular symbiosis, Trends Plant Sci., 7, 511, 10.1016/S1360-1385(02)02356-7
van Velzen, 2018, Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses, Proc. Natl. Acad. Sci. U. S. A., 201721395
Griesmann, 2018, Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis, Science, eaat1743, 10.1126/science.aat1743
Geurts, 2002, Rhizobium Nod factor perception and signalling, Plant Cell, 14, S239, 10.1105/tpc.002451
Doyle, 2003, The rest of the iceberg. Legume diversity and evolution in a phylogenetic context, Plant Physiol., 131, 900, 10.1104/pp.102.018150
Douglas, 1994
Cullimore, 2003, How legumes select their sweet talking symbionts, Science, 302, 575, 10.1126/science.1091269
Genre, 2016, Does a common pathway transduce symbiotic signals in plant–microbe interactions?, Front. Plant Sci., 7, 10.3389/fpls.2016.00096
Madsen, 2003, A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals, Nature, 425, 637, 10.1038/nature02045
Endre, 2002, A receptor kinase gene regulating symbiotic nodule development, Nature, 417, 962, 10.1038/nature00842
Stracke, 2002, A plant receptor-like kinase required for both bacterial and fungal symbiosis, Nature, 417, 959, 10.1038/nature00841
Kanamori, 2006, A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis, Proc. Natl. Acad. Sci. U. S. A., 103, 359, 10.1073/pnas.0508883103
Saito, 2007, NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus, Plant Cell, 19, 610, 10.1105/tpc.106.046938
Groth, 2010, NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development, Plant Cell, 22, 2509, 10.1105/tpc.109.069807
Capoen, 2011, Nuclear membranes control symbiotic calcium signaling of legumes, Proc. Natl. Acad. Sci. U. S. A., 108, 14348, 10.1073/pnas.1107912108
Ané, 2004, Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes, Science, 303, 1364, 10.1126/science.1092986
Charpentier, 2008, Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis, Plant Cell, 20, 3467, 10.1105/tpc.108.063255
Shimoda, 2012, Rhizobial and fungal symbioses show different requirements for calmodulin binding to calcium calmodulin–dependent protein kinase in Lotus japonicus, Plant Cell, 24, 304, 10.1105/tpc.111.092197
Miller, 2013, Calcium/calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling, Plant Cell, 25, 5053, 10.1105/tpc.113.116921
Poovaiah, 2013, Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions, Plant Physiol., 163, 531, 10.1104/pp.113.220780
Yano, 2008, CYCLOPS, a mediator of symbiotic intracellular accommodation, Proc. Natl. Acad. Sci. U. S. A., 105, 20540, 10.1073/pnas.0806858105
Singh, 2014, CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development, Cell Host Microbe, 15, 139, 10.1016/j.chom.2014.01.011
Kawaharada, 2017, The ethylene responsive factor required for nodulation 1 (ERN1) transcription factor is required for infection-thread formation in Lotus japonicus, Mol. Plant-Microbe Interact., 30, 194, 10.1094/MPMI-11-16-0237-R
Cerri, 2017, The ERN1 transcription factor gene is a target of the CCaMK/CYCLOPS complex and controls rhizobial infection in Lotus japonicus, New Phytol., 215, 323, 10.1111/nph.14547
Oldroyd, 2013, Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants, Nat. Rev. Microbiol., 11, 252, 10.1038/nrmicro2990
Ovchinnikova, 2011, IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp, Mol. Plant-Microbe Interact., 24, 1333, 10.1094/MPMI-01-11-0013
Bénaben, 1995, TE7, an inefficient symbiotic mutant of Medicago truncatula Gaertn. cv Jemalong, Plant Physiol., 107, 53, 10.1104/pp.107.1.53
Horváth, 2011, Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses, Mol. Plant-Microbe Interact., 24, 1345, 10.1094/MPMI-01-11-0015
Jin, 2018, IPD3 and IPD3L function redundantly in rhizobial and mycorrhizal symbioses, Front. Plant Sci., 9, 267, 10.3389/fpls.2018.00267
Popp, 2011, Regulation of signal transduction and bacterial infection during root nodule symbiosis, Curr. Opin. Plant Biol., 14, 458, 10.1016/j.pbi.2011.03.016
Miri, 2016, Into the root: how cytokinin controls rhizobial infection, Trends Plant Sci., 21, 178, 10.1016/j.tplants.2015.09.003
Saha, 2016, Gatekeeper tyrosine phosphorylation of SYMRK is essential for synchronizing the epidermal and cortical responses in root nodule symbiosis, Plant Physiol., 171, 71, 10.1104/pp.15.01962
Kundu, 2017, Silencing of putative cytokinin receptor histidine kinase1 inhibits both inception and differentiation of root nodules in Arachis hypogaea, Mol. Plant-Microbe Interact., 31, 187, 10.1094/MPMI-06-17-0144-R
Fabre, 2015, Nod factor-independent nodulation in Aeschynomene evenia required the common plant-microbe symbiotic toolkit, Plant Physiol., 169, 2654
Sprent, 2007, Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation, New Phytol., 174, 11, 10.1111/j.1469-8137.2007.02015.x
Sinharoy, 2009, Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non–infection thread legume of the Aeschynomeneae tribe, Mol. Plant-Microbe Interact., 22, 132, 10.1094/MPMI-22-2-0132
Stewart, 1993, A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications, Biotechniques, 14, 748
Nag, 2005, Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin, Plant Mol. Biol., 59, 821, 10.1007/s11103-005-1387-z
Raichaudhuri, 2006, Domain analysis of a groundnut calcium-dependent protein kinase nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains, J. Biol. Chem., 281, 10399, 10.1074/jbc.M511001200
Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., msw054
Jones, 1992, The rapid generation of mutation data matrices from protein sequences, Comput. Appl. Biosci.: CABIOS, 8, 275
Lazo, 1991, A DNA transformation–competent Arabidopsis genomic library in Agrobacterium, Nat. Biotechnol., 9, 963, 10.1038/nbt1091-963
Roy, 2006, Patterns of intron loss and gain in plants: intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana, Mol. Biol. Evol., 24, 171, 10.1093/molbev/msl159
Ma, 2012, The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves, 61
Charon, 1997, enod40 induces dedifferentiation and division of root cortical cells in legumes, Proc. Natl. Acad. Sci. U. S. A., 94, 8901, 10.1073/pnas.94.16.8901
Crespi, 1994, enod40, a gene expressed during nodule organogenesis, codes for a non‐translatable RNA involved in plant growth, EMBO J., 13, 5099, 10.1002/j.1460-2075.1994.tb06839.x
Harlow, 1999
Lei, 2014, A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch, Plant Physiol., 164, 1045, 10.1104/pp.113.232637
Boisson-Dernier, 2001, Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations, Mol. Plant-Microbe Interact., 14, 695, 10.1094/MPMI.2001.14.6.695
Domonkos, 2013, The identification of novel loci required for appropriate nodule development in Medicago truncatula, BMC Plant Biol., 13, 157, 10.1186/1471-2229-13-157
Boivin, 1990, Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions, Plant Cell, 2, 1157, 10.1105/tpc.2.12.1157
Haynes, 2004, Rapid analysis of legume root nodule development using confocal microscopy, New Phytol., 163, 661, 10.1111/j.1469-8137.2004.01138.x
Karmakar, 2018, Transcriptomic analysis with the progress of symbiosis in ‘crack-entry’ legume Arachis hypogaea highlights its contrast with ‘infection thread’ adapted legumes, Mol. Plant-Microbe Interact.
Han, 2018, Heterogeneity of intron presence/absence in Olifantiella sp. (Bacillariophyta) contributes to the understanding of intron loss, J. Phycol., 54, 105, 10.1111/jpy.12605
Messinese, 2007, A novel nuclear protein interacts with the symbiotic DMI3 calcium-and calmodulin-dependent protein kinase of Medicago truncatula, Mol. Plant-Microbe Interact., 20, 912, 10.1094/MPMI-20-8-0912
Zhu, 2006, Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses, Genetics, 172, 2491, 10.1534/genetics.105.051185
Sachs, 2018, Legumes versus rhizobia: a model for ongoing conflict in symbiosis, New Phytol., 219, 1199, 10.1111/nph.15222
Martindill, 2007, Nucleolar release of Hand1 acts as a molecular switch to determine cell fate, Nat. Cell Biol., 9, 1131, 10.1038/ncb1633
Plet, 2011, MtCRE1‐dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula, Plant J., 65, 622, 10.1111/j.1365-313X.2010.04447.x
Gonzalez-Rizzo, 2006, The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti, Plant Cell, 18, 2680, 10.1105/tpc.106.043778
Marsh, 2007, Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase, Plant Physiol., 144, 324, 10.1104/pp.106.093021
Lefebvre, 2010, A remorin protein interacts with symbiotic receptors and regulates bacterial infection, Proc. Natl. Acad. Sci. U. S. A., 107, 2343, 10.1073/pnas.0913320107
Vernié, 2008, EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula, Plant Cell, 20, 2696, 10.1105/tpc.108.059857
Tóth, 2012, Functional domain analysis of the remorin protein LjSYMREM1 in Lotus japonicus, PLoS One, 7, e30817, 10.1371/journal.pone.0030817
Kouchi, 2010, How many peas in a pod? Legume genes responsible for mutualistic symbioses underground, Plant Cell Physiol., 51, 1381, 10.1093/pcp/pcq107
Tirichine, 2007, A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis, Science, 315, 104, 10.1126/science.1132397
Soyano, 2014, NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production, Proc. Natl. Acad. Sci. U. S. A., 111, 14607, 10.1073/pnas.1412716111
Yoro, 2014, A positive regulator of nodule organogenesis, NODULE INCEPTION, acts as a negative regulator of rhizobial infection in Lotus japonicus, Plant Physiol., 165, 747, 10.1104/pp.113.233379
Lee, 2007, ENOD40 gene expression and cytokinin responses in the nonnodulating, nonmycorrhizal (Nod− Myc−) mutant, Masym3, of Melilotus alba Desr, Plant Signal. Behav., 2, 33, 10.4161/psb.2.1.3734