Kết nối chức năng của chuột chân trắng ở miền Nam Quebec, Canada

Springer Science and Business Media LLC - Tập 32 - Trang 1987-1998 - 2017
Robby R. Marrotte1,2,3, Andrew Gonzalez2, Virginie Millien3
1Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Canada
2Department of Biology, McGill University, Montreal, Canada
3Redpath Museum, McGill University, Montreal, Canada

Tóm tắt

Chuột chân trắng (Peromyscus leucopus) là một vật chủ quan trọng trong việc lưu giữ mầm bệnh gây bệnh Lyme ở miền đông Bắc Mỹ. Số lượng trường hợp mắc bệnh Lyme tại Quebec phía nam đã tăng từ hai ca vào năm 2004 lên 160 ca vào năm 2015. Do sự mối quan hệ chặt chẽ giữa sự xuất hiện của chuột chân trắng và sự phổ biến của mầm bệnh Lyme, chúng tôi có thể ước tính nguy cơ mắc bệnh Lyme bằng cách tìm ra những khu vực có sự tiếp xúc cao giữa các cá thể chuột. Trong nghiên cứu này, chúng tôi đã suy luận các mô hình di chuyển và tỷ lệ tiếp xúc của chuột chân trắng ở miền nam Quebec. Chúng tôi đã sử dụng mô hình định hướng theo mẫu để ước tính chỉ số hướng của kết nối chức năng từ Mô hình dựa trên cá thể. Chúng tôi đã tái hiện lại mẫu không gian được quan sát trong phân tích phân tử đã được công bố trước đó của một quần thể chuột chân trắng. Một khoảng cách cảm nhận được 80 m đã giải thích tốt nhất cho cấu trúc di truyền của chuột chân trắng trong khu vực. Đường đi của các cá thể thường chồng lấp lên các rìa của các trung tâm đô thị và ranh giới của các vật cản tuyến tính như đường cao tốc và các khu vực nước. Chúng tôi cho thấy xác suất tiếp xúc của chuột là một chỉ số tốt cho số lượng chuột bị bắt trong thực địa. Những phát hiện của chúng tôi làm nổi bật tính hữu ích của các mô hình dựa trên cá thể trong việc có thể dự đoán các khu vực tiếp xúc cao và các điểm nóng bệnh trong các cảnh quan.

Từ khóa

#chuột chân trắng; bệnh Lyme; kết nối chức năng; mô hình dựa trên cá thể; miền Nam Quebec

Tài liệu tham khảo

Aben J, Strubbe D, Adriaensen F, Palmer SC, Travis JM, Lens L, Matthysen E (2014) Simple individual-based models effectively represent Afrotropical forest bird movement in complex landscapes. J Appl Ecol 51:693–702 Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of “least-cost”modelling as a functional landscape model. Landsc Urban Plan 64:233–247 Albert CH, Rayfield B, Dumitru M, Gonzalez A (2017) Applying network theory to prioritize multi-species habitat networks that are robust to climate and land-use change. Conserv Biol. doi:10.1111/cobi.12943 Anderson CS, Cady AB, Meikle DB (2003) Effects of vegetation structure and edge habitat on the density and distribution of white-footed mice (Peromyscus leucopus) in small and large forest patches. Can J Zool 81:897–904 Andre A, Mouton A, Millien V, Michaux J (2017) Liver microbiome of Peromyscus leucopus, a key reservoir host species for emerging infectious diseases in North America. Infect Genet. Evol 52:10–18 Andreassen HP, Ims RA (2001) Dispersal in patchy vole populations: role of patch configuration, density dependence, and demography. Ecology 82:2911–2926 Barbour AG (2016) Infection resistance and tolerance in Peromyscus spp., natural reservoirs of microbes that are virulent for humans. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2016.07.002 Bedford NL, Hoekstra HE (2015) Peromyscus mice as a model for studying natural variation. Elife 4:e06813 Blanchong JA, Samuel MD, Scribner KT, Weckworth BV, Langenberg LA, Filcek KB (2008) Landscape genetics and the spatial distribution of chronic wasting disease. Biol Lett 4:130–133 Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279 Calisher CH, Sweeney WP, Root JJ, Beaty BJ (1999) Navigational instinct: a reason not to live trap deer mice in residences. Emerg Infect Dis 5:175–176 Coulon A, Aben J, Palmer SCF, Stevens VM, Callens T, Strubbe D, Lens L, Matthysen E, Baguette M, Travis JMJ (2015) A stochastic movement simulator improves estimates of landscape connectivity. Ecology 96:2203–2213 Cullingham CI, Kyle CJ, Pond BA, Rees EE, White BN (2009) Differential permeability of rivers to raccoon gene flow corresponds to rabies incidence in Ontario, Canada. Mol Ecol 18:43–53 Cullingham CI, Merrill EH, Pybus MJ, Bollinger TK, Wilson GA, Coltman DW (2011) Broad and fine-scale genetic analysis of white-tailed deer populations: estimating the relative risk of chronic wasting disease spread. Evol Appl 4:116–131 Cummings JR, Vessey SH (1994) Agricultural Influences on Movement Patterns of White-Footed Mice (Peromyscus leucopus). Am Midl Nat 132:209–218 Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499 Deyoung RW, Zamorano A, Kleberg C, Mesenbrink BT, Campbell TA, Leland BR, Moore GM, Honeycutt RL, Root JJ (2009) Landscape-genetic analysis of population structure in the Texas gray fox oral rabies vaccination zone United States. Wildl Manag 73:1292–1299 Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330 Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015 Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59 Fried JH, Levey DJ, Hogsette JA (2005) Habitat corridors function as both drift fences and movement conduits for dispersing flies. Oecologia 143:645–651 Gaitan J, Millien V (2016) Stress level, parasite load, and movement pattern in a small-mammal reservoir host for Lyme disease. Can J Zool 94:565–573 Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton Grimm V, Revilla E, Berger U, Jeltsch F, Mooji WM, Railsback SF, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991 Guo Q, Taper M, Schoenberger M, Brandle J (2005) Spatial-temporal population dynamics across species range: from centre to margin. Oikos 108:47–57 Haddad NM, Baum KA (1999) An experimental test of corridor effects on butterfly densities. Ecol Appl 9:623–633 Hall ER (1981) The mammals of North America. Wiley, New Jersey Hengeveld R, Haeck J (1982) The distribution of abundance I. Measurements. J Biogeogr. doi:10.2307/2844717 Hofmeister EK, Kolbert CP, Abdulkarim AS, Magera JM, Hopkins MK, Uhl JR, Ambyaye A, Telford SR, Cockerill FR, Persing DH (1998) Cosegregation of a novel Bartonella species with Borrelia burgdorferi and Babesia microti in Peromyscus leucopus. J Infect Dis 177:409–416 Holt RD, Keitt TH, Lewis MA, Maurer BA, Taper ML (2005) Theoretical models of species’ borders: single species approaches. Oikos 108:18–27 Hu H, Nigmatulina K, Eckhoff P (2013) The scaling of contact rates with population density for the infectious disease models. Math Biosci 244:125–134 Jaquiéry J, Broquet T, Hirzel H, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20:692–705 Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026 Kanda LL, Fuller TK, Sievert PR, Kellogg RL (2009) Seasonal source–sink dynamics at the edge of a species’ range. Ecology 90:1574–1585 Keane B (1990) Dispersal and inbreeding avoidance in the white-footed mouse, Peromyscus leucopus. Anim Behav 40:143–152 Keenan K, McGinnity P, Cross TF, Crozier WW, Prodohl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788 Kelly AC, Mateus-Pinilla NE, Douglas M, Douglas W, Brown W, Ruiz M, Novakofski J (2010) Utilizing disease surveillance to examine gene flow and dispersal in white-tailed deer. J Appl Ecol 47:1189–1198 Krohne DT, Hoch GA (1999) Demography of Peromyscus leucopus populations on habitat patches: the role of dispersal. Can J Zool 77:1247–1253 Ledevin R, Millien V (2013) Congruent morphological and genetic differentiation as a signature of range expansion in a fragmented landscape. Ecol Evol 3:4172–4182 Levi T, Massey AL, Holt RD, Keesing F, Ostfeld RS, Peres CA (2016) Does biodiversity protect humans against infectious disease? Comment. Ecology 97:536–542 LoGiudice K, Duerr STK, Newhouse MJ, Schmidt KA, Killilea ME, Ostfeld RS (2008) Impact of host community composition on Lyme disease risk. Ecology 89:2841–2849 Loreau M, Daufresne T, Gonzalez A, Gravel D, Guichard F, Loroux S, Mouquet N (2013) Unifying sources and sinks in ecology and Earth sciences. Biol Rev 88:365–379 Marrotte RR, Gonzalez A, Millien V (2014) Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal. Mol Ecol 23:3983–3998 Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28:403–416 McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561 Mech SG, Zollner PA (2002) Using body size to predict perceptual range. Oikos 98:47–52 Mineau P, Madison D (1977) Radio-tracking of Peromyscus leucopus. Can J Zool 55:465–468 Myers P, Lundrigan BL, Hoffman SMG, Haraminac AP, Seto SH (2009) Climate-induced changes in the small mammal communities of the Northern Great Lakes Region. Glob Chang Biol 15:1434–1454 Ostfeld RS (2013) A Candide response to Panglossian accusations by Randolph and Dobson: biodiversity buffers disease. Parasitology 140:1196–1198 Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 14:722–728 Ostfeld RS, Keesing F (2013) Straw men don’t get Lyme disease: response to Wood and Lafferty. Trends Ecol Evol 28:502–503 Palmer SCF, Coulon A, Travis JMJ (2011) Introducing a “stochastic movement simulator” for estimating habitat connectivity. Methods Ecol Evol 2:258–268 Palmer SCF, Coulon A, Travis JMJ (2014) Inter-individual variability in dispersal behaviours impacts connectivity estimates. Oikos 123:923–932 Randolph SE, Dobson ADM (2012) Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139:847–863 Rees EE, Pond BA, Tinline RR, Bélanger D (2013) Modelling the effect of landscape heterogeneity on the efficacy of vaccination for wildlife infectious disease control. J Appl Ecol 50:881–891 Rogic A, Tessier N, Legendre P, Lapointe FJ, Millien V (2013) Genetic structure of the white-footed mouse in the context of the emergence of Lyme disease in southern Québec. Ecol Evol 3:2075–2088 Root JJ, Calisher CH, Beaty BJ (1999) Relationships of deer mouse movement, vegetative structure, and prevalence of infection with Sin Nombre virus. J Wildl Dis 35:311–318 Root JJ, Black WC, Calisher CH, Wilson KR, Mackie RS, Schountz T, Mills JN, Beaty BJ (2003) Analyses of gene flow among populations of deer mice (Peromyscus maniculatus) at sites near hantavirus pulmonary syndrome case-patient residences. J Wildl Dis 39:287–298 Root JJ, Black WC, Calisher CH, Wilson KR, Beaty BJ (2004) Genetic relatedness of deer mice (Peromyscus maniculatus) infected with Sin Nombre virus. Vector-Borne and Zoonotic Diseases 4:149–157 Root JJ, Puskas RB, Fischer JW, Swope CB, Neubaum MA, Reeder SA, Piaggio AJ (2009) Landscape genetics of raccoons (Procyon lotor) associated with ridges and valleys of Pennsylvania: implications for oral rabies vaccination programs. Vector Borne Zoonotic Dis 9:583–588 Roy-Dufresne E, Logan T, Simon JA, Chmura GL, Millien V (2013) Poleward expansion of the white-footed mouse (Peromyscus leucopus) under climate change: implications for the spread of lyme disease. PLoS ONE 8:e80724 Schartel TE, Schauber EM (2016) Relative preference and localized food affect predator space use and consumption of incidental prey. PLoS ONE 11:e0151483 Simon JA, Marrotte RR, Desrosiers N, Fiset J, Gaitan J, Gonzalez A, Logan T (2014) Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol Appl 7:750–764 Sundqvist L, Zackrisson M, Kleinhans D (2013) Directional genetic differentiation and asymmetric migration. Ecol Evol. doi:10.1002/ece3.2096 Sundqvist L, Keenan K, Zackrisson M, Prodohl P, Kleinhans D (2016) Directional genetic differentiation and relative migration. Ecol Evol 6:3461–3475 Teferi T, Millar JS (1993) Long distance homing by the deer mouse, Peromyscus maniculatus. Can Field Nat 107:109–111 Travis J, David MJ, Murrell J, Dytham C (1999) The evolution of density–dependent dispersal. Proc Royal Soc Lond B 266:1837–1842 Turney S, Gonzalez A, Millien V (2014) The negative relationship between mammal host diversity and Lyme disease incidence strengthens through time. Ecology 95:3244–3250 Urban MC, Bocedi G, Hendry AP, Mihoub JB, Singer A, Bridle JR, Crozier LG, De Meester L, Godsoe W, Gonzalez A, Hellmann JJ, Holt RD, Huth A, Johst K, Krug CB, Leadley PW, Palmer SCF, Pantel JH, Schmitz A, Zollner PA, Travis JMJ (2016) Improving the forecast for biodiversity under climate change. Science 353:aad8466 Wolf M, Batzli GO (2002) Effects of forest edge on populations of white-footed mice Peromyscus leucopus. Ecography (Cop) 25:193–199 Wolf M, Batzli G (2004) Forest edge: high or low quality habitat for white-footed mice (Peromyscus leucopus)? Ecology 85:756–769 Wolff JO (1992) Parents suppress reproduction and stimulate dispersal in opposite-sex juvenile white-footed mice. Nature 359:409–410 Wolff JO, Lundy KI, Baccus R (1988) Dispersal, inbreeding avoidance and reproductive success in white-footed mice. Anim Behav 36:456–465 Wood CL, Lafferty KD (2013) Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol Evol 28:239–247 Wood CL, Lafferty KD, DeLeo G, Young HS, Hudson PJ, Kuris AM (2014) Does biodiversity protect humans against infectious disease? Ecology 95:817–832 Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797 Zollner PA, Lima SL (1997) Landscape-level perceptual abilities in white-footed mice: perceptual range and the detection of forested habitat. Oikos 80:51 Zollner PA, Lima SL (1999) Illumination and the perception of remote habitat patches by white-footed mice. Anim Behav 58:489–500