Functional characterization of an arrestin gene on insecticide resistance of Culex pipiens pallens
Tóm tắt
Continuous and excessive application of insecticides has resulted in the rapid development of insecticide resistance in several mosquito species, including Culex pipiens pallens. Previous studies in our laboratory found that arrestin gene expression was higher in the deltamethrin-resistant (DR) strain than in the deltamethrin-susceptible (DS) strain of Cx. pipiens pallens. Similarly, other studies reported that arrestin was highly expressed in permethrin-resistant Cx. quinquefasciatus and in dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila melanogaster. Full-length cDNAs of an arrestin gene were cloned from Cx. pipiens pallens via polymerase chain reaction (PCR) and rapid amplification of cDNA end (RACE). The mRNA levels of the arrestin gene in the whole life cycle of DR and DS strains of Cx. pipiens pallens were investigated via quantitative real-time PCR. In addition, the relationship between arrestin and deltamethrin (DM) resistance were identified using genetic overexpression strategies and arrestin RNAi in mosquito cells. Cell viability was analyzed with cholecystokinin octapeptide after DM treatment. Moreover, the mRNA levels of cytochrome P450 6A1 (CYP6A1) and opsin in the transfected cells and controls were analyzed. Complete arrestin gene sequence was cloned and expressed throughout the life cycle of Cx. pipiens pallens. Moreover, arrestin was significantly upregulated in the DR strain, compared with that in the DS strain at the egg, pupae, and adult stages. Arrestin overexpression comparably increased the mosquito cell viability, whereas arrestin knockdown by siRNA decreased mosquito cell viability with deltamethrin (DM) treatment. Meanwhile, the mRNA levels of CYP6A1 and opsin were upregulated in mosquito cells transfected with arrestin and downregulated in mosquito cells with arrestin knockdown. This study presented the first evidence that arrestin might be associated with insecticide resistance in Cx. pipiens pallens.
Tài liệu tham khảo
White MT, Griffin JT, Churcher TS, Ferguson NM, Basáñez MG, Ghani AC: Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011, 4: 153-10.1186/1756-3305-4-153.
Gubler D, Jeffery JAL, Thi Yen N, Nam VS, Nghia LT, Hoffmann AA, Kay BH, Ryan PA: Characterizing the Aedes aegypti Population in a Vietnamese Village in Preparation for a Wolbachia-Based Mosquito Control Strategy to Eliminate Dengue. PLoS Negl Trop Dis. 2009, 3 (11): e552-10.1371/journal.pntd.0000552.
Peng R, Maklokova VI, Chandrashekhar JH, Lan Q: In vivo functional genomic studies of sterol carrier protein-2 gene in the yellow fever mosquito. PLoS One. 2011, 6 (3): e18030-10.1371/journal.pone.0018030.
Koelle K, Gambhir M, Michael E: Complex Ecological Dynamics and Eradicability of the Vector Borne Macroparasitic Disease, Lymphatic Filariasis. PLoS One. 2008, 3 (8): e2874-10.1371/journal.pone.0002874.
Smith DR, Adams AP, Kenney JL, Wang E, Weaver SC: Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: infection initiated by a small number of susceptible epithelial cells and a population bottleneck. Virology. 2008, 372 (1): 176-186. 10.1016/j.virol.2007.10.011.
Styer LM, Lim PY, Louie KL, Albright RG, Kramer LD, Bernard KA: Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice. J Virol. 2010, 85 (4): 1517-1527.
Powers AM, Soumahoro M-K, Boelle P-Y, Gaüzere B-A, Atsou K, Pelat C, Lambert B, La Ruche G, Gastellu-Etchegorry M, Renault P: The Chikungunya Epidemic on La Réunion Island in 2005–2006: a cost-of-illness study. PLoS Negl Trop Dis. 2011, 5 (6): e1197-10.1371/journal.pntd.0001197.
World Health Organisation: Pesticides and their application for the control of vectors and pests of public health importance. 2006, WHO/CDS/NTD/WHOPES/GCDPP/2006.1, , -.
Molyneux DH, Malecela MN: Neglected tropical diseases and the millennium development goals: why the "other diseases" matter: reality versus rhetoric. Parasit Vectors. 2011, 4: 234-10.1186/1756-3305-4-234.
Hemingway J, Beaty BJ, Rowland M, Scott TW, Sharp BL: The Innovative Vector Control Consortium: improved control of mosquito-borne diseases. Trends Parasitol. 2006, 22 (7): 308-312. 10.1016/j.pt.2006.05.003.
Katsuda Y, Leemingsawat S, Thongrungkiat S, Prummonkol S, Samung Y, Kanzaki T, Watanabe T, Kahara T: Control of mosquito vectors of tropical infectious diseases: (2) pyrethroid susceptibility of Aedes aegypti (l) collected from different sites in Thailand. Southeast Asian J Trop Med Public Health. 2008, 39 (2): 229-234.
Tungu P, Magesa S, Maxwell C, Malima R, Masue D, Sudi W, Myamba J, Pigeon O, Rowland M: Evaluation of PermaNet 3.0 a deltamethrin-PBO combination net against Anopheles gambiae and pyrethroid resistant Culex quinquefasciatus mosquitoes: an experimental hut trial in Tanzania. Malaria J. 2010, 9 (1): 21-10.1186/1475-2875-9-21.
Rivero A, Vezilier J, Weill M, Read AF, Gandon S: Insecticide control of vector-borne diseases: when is insecticide resistance a problem?. PLoS Pathog. 2010, 6 (8): e1001000-10.1371/journal.ppat.1001000.
Hansen IA, Marcombe S, Mathieu RB, Pocquet N, Riaz M-A, Poupardin R, Sélior S, Darriet F, Reynaud S, Yébakima A: Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS One. 2012, 7 (2): e30989-10.1371/journal.pone.0030989.
Nardini L, Christian RN, Coetzer N, Ranson H, Coetzee M, Koekemoer LL: Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin. Parasit Vectors. 2012, 5 (1): 113-10.1186/1756-3305-5-113.
Hu Z, Du Y, Nomura Y, Dong K: A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids. Insect Biochem Mol Biol. 2011, 41 (1): 9-13. 10.1016/j.ibmb.2010.09.005.
Xu Y, Yang M, Sun J, Qian J, Zhang D, Sun Y, Ma L, Zhu C: Glycogen branching enzyme: a novel deltamethrin resistance-associated gene from Culex pipiens pallens. Parasitol Res. 2008, 103 (2): 449-458. 10.1007/s00436-008-1003-7.
Yang M, Qian J, Sun J, Xu Y, Zhang D, Ma L, Sun Y, Zhu C: Cloning and characterization of myosin regulatory light chain (MRLC) gene from Culex pipiens pallens. Comp Biochem Physiol B Biochem Mol Biol. 2008, 151 (2): 230-235. 10.1016/j.cbpb.2008.07.008.
Zhang J, Yang M, Wang W, Sun H, Xu Y, Ma L, Sun Y, Zhu C: prag01, a novel deltamethrin-resistance-associated gene from Culex pipiens pallens. Parasitol Res. 2010, 108 (2): 417-423.
Hu XB, Sun Y, Wang WJ, Yang MX, Sun LX, Tan WB, Sun J, Qian J, Ma L, Zhang DH, Zhu CL: Cloning and characterization of NYD-OP7, a novel deltamethrin resistance associated gene from Culex pipiens pallens. Pestic Biochem Phys. 2007, 88 (1): 82-91. 10.1016/j.pestbp.2006.09.004.
Liu N, Liu H, Zhu F, Zhang L: Differential expression of genes in pyrethroid resistant and susceptible mosquitoes, Culex quinquefasciatus (S.). Gene. 2007, 394 (1–2): 61-68.
Palczewski K: Structure and functions of arrestins. Protein Sci. 1994, 3 (9): 1355-1361. 10.1002/pro.5560030901.
Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD: Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A. 2002, 99 (11): 7478-7483. 10.1073/pnas.112198299.
Li TT, Alemayehu M, Aziziyeh AI, Pape C, Pampillo M, Postovit LM, Mills GB, Babwah AV, Bhattacharya M: Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells. Mol Cancer Res. 2009, 7 (7): 1064-1077. 10.1158/1541-7786.MCR-08-0578.
Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM: Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc Natl Acad Sci U S A. 2008, 105 (18): 6614-6619. 10.1073/pnas.0710402105.
Luan B, Zhao J, Wu H, Duan B, Shu G, Wang X, Li D, Jia W, Kang J, Pei G: Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature. 2009, 457 (7233): 1146-1149. 10.1038/nature07617.
Kemena C, Notredame C: Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics. 2009, 25 (19): 2455-2465. 10.1093/bioinformatics/btp452.
Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30 (9): e36-10.1093/nar/30.9.e36.
Kozak M: Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986, 44 (2): 283-292. 10.1016/0092-8674(86)90762-2.
Sano K, Maeda K, Oki M, Maeda Y: Enhancement of protein expression in insect cells by a lobster tropomyosin cDNA leader sequence. FEBS Lett. 2002, 532 (1–2): 143-146.
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Brooke BD, Koekemoer LL: Major effect genes or loose confederations? The development of insecticide resistance in the malaria vector Anopheles gambiae. Parasit Vectors. 2010, 3: 74-10.1186/1756-3305-3-74.
Kendall RT, Luttrell LM: Diversity in arrestin function. Cell Mol Life Sci. 2009, 66 (18): 2953-2973. 10.1007/s00018-009-0088-1.
Aubry L, Guetta D, Klein G: The arrestin fold: variations on a theme. Curr Genomics. 2009, 10 (2): 133-142. 10.2174/138920209787847014.
Mounsey KE, Pasay CJ, Arlian LG, Morgan MS, Holt DC, Currie BJ, Walton SF, McCarthy JS: Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites. Parasit Vectors. 2010, 3: 43-10.1186/1756-3305-3-43.
Hemingway J, Hawkes NJ, McCarroll L, Ranson H: The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004, 34 (7): 653-665. 10.1016/j.ibmb.2004.03.018.
Vontas J, Blass C, Koutsos AC, David JP, Kafatos FC, Louis C, Hemingway J, Christophides GK, Ranson H: Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol. 2005, 14 (5): 509-521. 10.1111/j.1365-2583.2005.00582.x.
Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, Batterham P, Feyereisen R, Wilson TG: ffrench-Constant RH: A single p450 allele associated with insecticide resistance in Drosophila. Science. 2002, 297 (5590): 2253-2256. 10.1126/science.1074170.
Daborn PJ, Boundy S, Yen J, Pittendrigh B, ffrench-Constant R: DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics. 2001, 266 (4): 556-563. 10.1007/s004380100531.
Carino FA, Koener JF, Plapp FW, Feyereisen R: Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol. 1994, 24 (4): 411-418. 10.1016/0965-1748(94)90034-5.
Weill M, Berthomieu A, Berticat C, Lutfalla G, Nègre V, Pasteur N, Philips A, Leonetti JP, Fort P, Raymond M: Insecticide resistance: a silent base prediction. Curr Biol. 2004, 14 (14): 552-553. 10.1016/j.cub.2004.07.008.
David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, Louis C, Hemingway J, Ranson H: The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci U S A. 2005, 102 (11): 4080-4084. 10.1073/pnas.0409348102.
DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK: β-Arrestins and Cell Signaling. Annu Rev Physiol. 2007, 69 (1): 483-510. 10.1146/annurev.physiol.69.022405.154749.
Feyereisen R, Koener JF, Farnsworth DE, Nebert DW: Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc Natl Acad Sci U S A. 1989, 86 (5): 1465-1469. 10.1073/pnas.86.5.1465.
He J, Sun H, Zhang D, Sun Y, Ma L, Chen L, Liu Z, Xiong C, Yan G, Zhu C: Cloning and characterization of 60 S ribosomal protein L22 (RPL22) from Culex pipiens pallens. Comp Biochem Physiol B Biochem Mol Biol. 2009, 153 (2): 216-222. 10.1016/j.cbpb.2009.03.003.
Yang CH, Huang HW, Chen KH, Chen YS, Sheen-Chen SM, Lin CR: Antinociceptive potentiation and attenuation of tolerance by intrathecal -arrestin 2 small interfering RNA in rats. Br J Anaesth. 2011, 107 (5): 774-781. 10.1093/bja/aer291.
Dang VC, Chieng B, Azriel Y, Christie MJ: Cellular Morphine Tolerance Produced by Arrestin-2-Dependent Impairment of Opioid Receptor Resensitization. J Neurosci. 2011, 31 (19): 7122-7130. 10.1523/JNEUROSCI.5999-10.2011.
Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ, Dykstra LA, Caron MG: Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice. J Neurosci. 2003, 23 (32): 10265-10273.
Raehal KM, Walker JK, Bohn LM: Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther. 2005, 314 (3): 1195-1201. 10.1124/jpet.105.087254.
Pedra JH, McIntyre LM, Scharf ME, Pittendrigh BR: Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc Natl Acad Sci U S A. 2004, 101 (18): 7034-7039. 10.1073/pnas.0400580101.
Summers RJ: Molecular pharmacology of G protein-coupled receptors. Br J Pharmacol. 2010, 159 (5): 983-985. 10.1111/j.1476-5381.2010.00695.x.
Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV: Regulation of arrestin binding by rhodopsin phosphorylation level. J Biol Chem. 2007, 282 (44): 32075-32083. 10.1074/jbc.M706057200.
Merrill CE, Pitts RJ, Zwiebel LJ: Molecular characterization of arrestin family members in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol. 2003, 12 (6): 641-650. 10.1046/j.1365-2583.2003.00450.x.