Functional characterisation of the ACE2 orthologues in Drosophila provides insights into the neuromuscular complications of COVID-19
Tài liệu tham khảo
Hu, 2021, Characteristics of SARS-CoV-2 and COVID-19, Nat Rev Microbiol, 19, 141, 10.1038/s41579-020-00459-7
Shimohata, 2022, Neuro-COVID-19, Clin Exp Neuroimmunol, 13, 17, 10.1111/cen3.12676
Silva, 2022, Muscle dysfunction in the long coronavirus disease 2019 syndrome: pathogenesis and clinical approach, Rev. Med. Virol., 32, 10.1002/rmv.2355
Paliwal, 2020, Neuromuscular presentations in patients with COVID-19, Neurol. Sci., 41, 3039, 10.1007/s10072-020-04708-8
Suh, 2021, Neuromuscular complications of coronavirus disease-19, Curr. Opin. Neurol., 34, 669, 10.1097/WCO.0000000000000970
Davis, 2023, Long COVID: major findings, mechanisms and recommendations, Nat Rev Microbiol, 21, 133, 10.1038/s41579-022-00846-2
Jacob, 2022, Neuromuscular complications of SARS-CoV-2 and other viral infections, Front. Neurol., 13, 10.3389/fneur.2022.914411
Zhang, 2020, The etiology of Bell’s palsy: a review, J. Neurol., 267, 1896, 10.1007/s00415-019-09282-4
Bjornevik, 2022, Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis, Science, 375, 296, 10.1126/science.abj8222
Lanz, 2022, Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM, Nature, 603, 321, 10.1038/s41586-022-04432-7
Alfahad, 2013, Retroviruses and amyotrophic lateral sclerosis, Antivir. Res., 99, 180, 10.1016/j.antiviral.2013.05.006
Hoffmann, 2020, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, 181, 271, 10.1016/j.cell.2020.02.052
Perez-Valera, 2021, Calbet, angiotensin-converting enzyme 2 (SARS-CoV-2 receptor) expression in human skeletal muscle, Scand. J. Med. Sci. Sports, 31, 2249, 10.1111/sms.14061
Chen, 2020, The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains, Front. Neurol., 11
Li, 2020, Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues, Infect Dis Poverty, 9, 45, 10.1186/s40249-020-00662-x
Emmi, 2023, Detection of SARS-CoV-2 viral proteins and genomic sequences in human brainstem nuclei, NPJ Parkinsons Dis, 9, 25, 10.1038/s41531-023-00467-3
Hooper, 2021, Muscle biopsy findings in a case of SARS-CoV-2-associated muscle injury, J. Neuropathol. Exp. Neurol., 80, 377, 10.1093/jnen/nlaa155
S.R. Stein, S.C. Ramelli, A. Grazioli, J.Y. Chung, M. Singh, C.K. Yinda, C.W. Winkler, J. Sun, J.M. Dickey, K. Ylaya, S.H. Ko, A.P. Platt, P.D. Burbelo, M. Quezado, S. Pittaluga, M. Purcell, V.J. Munster, F. Belinky, M.J. Ramos-Benitez, E.A. Boritz, I.A. Lach, D.L. Herr, J. Rabin, K.K. Saharia, R.J. Madathil, A. Tabatabai, S. Soherwardi, M.T. McCurdy, N.C.-A. Consortium, K.E. Peterson, J.I. Cohen, E. de Wit, K.M. Vannella, S.M. Hewitt, D.E. Kleiner, D.S. Chertow, 2022, SARS-CoV-2 infection and persistence in the human body and brain at autopsy, Nature, 612, 758, 10.1038/s41586-022-05542-y
Lu, 2022, SARS-CoV-2 down-regulates ACE2 through lysosomal degradation, Mol. Biol. Cell, 33, ar147, 10.1091/mbc.E22-02-0045
Cabello-Verrugio, 2012, Angiotensin II: role in skeletal muscle atrophy, Curr. Protein Pept. Sci., 13, 560, 10.2174/138920312803582933
Cosarderelioglu, 2020, Brain renin-angiotensin system at the intersect of physical and cognitive frailty, Front. Neurosci., 14, 10.3389/fnins.2020.586314
Arthur, 2021, Development of ACE2 autoantibodies after SARS-CoV-2 infection, PLoS One, 16, 10.1371/journal.pone.0257016
Lubbe, 2020, ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV, Clin Sci (Lond), 134, 2851, 10.1042/CS20200899
Zhu, 2021, Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenic effects with Selinexor as an effective treatment, Cell Biosci, 11, 59, 10.1186/s13578-021-00567-8
van de Leemput, 2021, Drosophila, a powerful model to study virus-host interactions and pathogenicity in the fight against SARS-CoV-2, Cell Biosci, 11, 110, 10.1186/s13578-021-00621-5
Nainu, 2020, Potential application of Drosophila melanogaster as a model organism in COVID-19-related research, Front. Pharmacol., 11, 10.3389/fphar.2020.588561
Herrera, 2021, ACE and ACE2: insights from Drosophila and implications for COVID-19, Heliyon, 7, 10.1016/j.heliyon.2021.e08555
Aquilina, 2018, Modelling motor neuron disease in fruit flies: lessons from spinal muscular atrophy, J. Neurosci. Methods, 310, 3, 10.1016/j.jneumeth.2018.04.003
Cauchi, 2006, The fly as a model for neurodegenerative diseases: is it worth the jump?, Neurodegener. Dis., 3, 338, 10.1159/000097303
Lloyd, 2010, Flightless flies: Drosophila models of neuromuscular disease, Ann. N. Y. Acad. Sci., 1184, e1, 10.1111/j.1749-6632.2010.05432.x
Liguori, 2021, Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers, Cell. Mol. Life Sci., 78, 6143, 10.1007/s00018-021-03905-8
Dietzl, 2007, A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila, Nature, 448, 151, 10.1038/nature05954
Chiu, 2010, Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila, J. Vis. Exp., 43, 2157
Cacciottolo, 2019, SMN complex member Gemin3 self-interacts and has a functional relationship with ALS-linked proteins TDP-43, FUS and Sod1, Sci. Rep., 9, 18666, 10.1038/s41598-019-53508-4
Li, 2009, SOAP2: an improved ultrafast tool for short read alignment, Bioinformatics, 25, 1966, 10.1093/bioinformatics/btp336
Kim, 2019, Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype, Nat. Biotechnol., 37, 907, 10.1038/s41587-019-0201-4
Li, 2011, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome, BMC Bioinformatics, 12, 323, 10.1186/1471-2105-12-323
Love, 2014, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, 10.1186/s13059-014-0550-8
Shen, 2014, rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data, Proc. Natl. Acad. Sci. U. S. A., 111, E5593, 10.1073/pnas.1419161111
Ge, 2020, ShinyGO: a graphical gene-set enrichment tool for animals and plants, Bioinformatics, 36, 2628, 10.1093/bioinformatics/btz931
Oudit, 2023, Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic, Cell, 186, 906, 10.1016/j.cell.2023.01.039
Woolums, 2020, TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca(2), Nat. Commun., 11, 2679, 10.1038/s41467-020-16411-5
Storkebaum, 2009, Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in Drosophila features of human Charcot-Marie-Tooth neuropathy, Proc. Natl. Acad. Sci. U. S. A., 106, 11782, 10.1073/pnas.0905339106
Vanden Broeck, 2013, TDP-43 loss-of-function causes neuronal loss due to defective steroid receptor-mediated gene program switching in Drosophila, Cell Rep., 3, 160, 10.1016/j.celrep.2012.12.014
Steyaert, 2018, FUS-induced neurotoxicity in Drosophila is prevented by downregulating nucleocytoplasmic transport proteins, Hum. Mol. Genet., 27, 4103
Hurst, 2003, The drosophila angiotensin-converting enzyme homologue Ance is required for spermiogenesis, Dev. Biol., 254, 238, 10.1016/S0012-1606(02)00082-9
Kim, 2017, Angiotensin-converting enzyme Ance is cooperatively regulated by mad and pannier in Drosophila imaginal discs, Sci. Rep., 7, 13174, 10.1038/s41598-017-13487-w
Jia, 2020, ACE2 mouse models: a toolbox for cardiovascular and pulmonary research, Nat. Commun., 11, 5165, 10.1038/s41467-020-18880-0
Tang, 2010, A mouse knockout library for secreted and transmembrane proteins, Nat. Biotechnol., 28, 749, 10.1038/nbt.1644
Leader, 2018, FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data, Nucleic Acids Res., 46, D809, 10.1093/nar/gkx976
McGurk, 2015, Drosophila as an in vivo model for human neurodegenerative disease, Genetics, 201, 377, 10.1534/genetics.115.179457
Borg, 2023, Loss of amyotrophic lateral sclerosis risk factor SCFD1 causes motor dysfunction in Drosophila, Neurobiol. Aging, 126, 67, 10.1016/j.neurobiolaging.2023.02.005
Thakur, 2021, COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital, Brain, 144, 2696, 10.1093/brain/awab148
Puelles, 2020, Multiorgan and renal tropism of SARS-CoV-2, N. Engl. J. Med., 383, 590, 10.1056/NEJMc2011400
Matschke, 2020, Neuropathology of patients with COVID-19 in Germany: a post-mortem case series, Lancet Neurol., 19, 919, 10.1016/S1474-4422(20)30308-2
Meinhardt, 2021, Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19, Nat. Neurosci., 24, 168, 10.1038/s41593-020-00758-5
Aschman, 2023, Post-COVID syndrome is associated with capillary alterations, macrophage infiltration and distinct transcriptomic signatures in skeletal muscles, medRxiv
Helms, 2020, Neurologic features in severe SARS-CoV-2 infection, N. Engl. J. Med., 382, 2268, 10.1056/NEJMc2008597
Schwabenland, 2021, Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions, Immunity, 54, 1594, 10.1016/j.immuni.2021.06.002
Fullard, 2021, Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19, Genome Med, 13, 118, 10.1186/s13073-021-00933-8
Solomon, 2020, Neuropathological features of Covid-19, N. Engl. J. Med., 383, 989, 10.1056/NEJMc2019373
Cornell, 1995, Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster, J. Biol. Chem., 270, 13613, 10.1074/jbc.270.23.13613
Houard, 1998, The Drosophila melanogaster-related angiotensin-I-converting enzymes Acer and Ance—distinct enzymic characteristics and alternative expression during pupal development, Eur. J. Biochem., 257, 599, 10.1046/j.1432-1327.1998.2570599.x
Siviter, 2002, Ance, a Drosophila angiotensin-converting enzyme homologue, is expressed in imaginal cells during metamorphosis and is regulated by the steroid, 20-hydroxyecdysone, Biochem. J., 367, 187, 10.1042/bj20020567
Yang, 2020, SARS-CoV-2 protein ORF3a is pathogenic in Drosophila and causes phenotypes associated with COVID-19 post-viral syndrome, bioRxiv
Duarte, 2022, The Drosophila melanogaster ACE2 ortholog genes are differently expressed in obesity/diabetes and aging models: implications for COVID-19 pathology, Biochim. Biophys. Acta Mol. basis Dis., 1868, 10.1016/j.bbadis.2022.166551