Functional calculus for generators of uniformly bounded holomorphic semigroups

Springer Science and Business Media LLC - Tập 38 Số 1 - Trang 91-103 - 1989
Ralph de Laubenfels1
1Department of Mathematics, Ohio University, 45701, Athens, Ohio

Tóm tắt

Từ khóa


Tài liệu tham khảo

Benzinger, H., E. Berkson, and T. A. Gillespie,Spectral families of projections, semigroups, and differential operators, Trans Amer. Math. Soc., Vol. 275, no. 2 (1983), 431–475.

Berkson, E.,A characterization of scalar type operators on reflexive Banach spaces, Pacific J. Math. 13 (1963), 365–373.

Colojoara, I. and C. Foias,Theorem of generalized spectral operators, Gordon and Breach, New York, 1982.

deLaubenfels, R.,Accretive operators and scalar operators, Ph. D. thesis, Univ. of California, Berkeley, 1982.

Dowson, H. R.,Spectral theory of linear operators, London Math. Soc. Mono., no. 12, Academic Press, New York, 1978.

Dunford, N. and J. T. Schwartz,Linear operators, III, Spectral operators, Wiley-Interscience, New York, 1971.

Kantorovitz, S.,Characterization of unbounded spectral operators with spectrum in a half-line, Comment. Math. Helv. 56 (1981), no. 2, 163–178.

Marschall, E.,Functional calculi for closed linear operators in Banach spaces, Manuscripta Math. 35 (1981), no. 3, 277–310.

Nelson, E.,A functional calculus using singular Laplace integrals, Trans. Amer. Math. Soc. 88 (1958), 400–413.

Reed, M. and B. Simon,Methods of modern mathematical physics, II, Fourier analysis, self-adjointness, Academic press, New York, 1975.

Ringrose, J. R.,On well-bounded operators II, Proc. London Math. Soc. (3) 13 (1963), 613–638.

Smart, D. R.,Conditionally convergent spectral expansions, J. Austral. Math. Soc. 1 (1960), 319–333.