Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins

Aija Kyttälä1, Ulla Lahtinen2, Thomas Braulke3, Sandra L. Hofmann4
1National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, P.O.B. 104, FIN-00251 Helsinki, Finland
2Folkhälsan Institute of Genetics and Neuroscience Center, Biomedicum Helsinki, Box 63, 00014 University of Helsinki, Finland
3Department of Biochemistry, Children's Hospital, University of Hamburg, 20246 Hamburg, Germany
4Department of Internal Medicine and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

Tài liệu tham khảo

Cooper, 2003, Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis, Curr. Opin. Neurol., 16, 121, 10.1097/00019052-200304000-00001 Haltia, 2003, The neuronal ceroid-lipofuscinoses, J. Neuropathol. Exp. Neurol., 62, 1, 10.1093/jnen/62.1.1 Mitchison, 2004, Selectivity and types of cell death in the neuronal ceroid lipofuscinoses, Brain Pathol., 14, 86, 10.1111/j.1750-3639.2004.tb00502.x Weimer, 2002, The neuronal ceroid lipofuscinoses: mutations in different proteins result in similar disease, Neuromol. Med., 1, 111, 10.1385/NMM:1:2:111 Tyynela, 2000, A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration, EMBO J., 19, 2786, 10.1093/emboj/19.12.2786 Koike, 2000, Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons, J. Neurosci., 20, 6898, 10.1523/JNEUROSCI.20-18-06898.2000 Awano, 2006, A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis, Mol. Genet. Metab., 341, 10.1016/j.ymgme.2005.11.005 Siintola, 2006, Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis, Brain, 10.1093/brain/awl107 Steinfeld, 2006, Cathepsin d deficiency is associated with a human neurodegenerative disorder, Am. J. Hum. Genet., 78, 988, 10.1086/504159 Felbor, 2002, Neuronal loss and brain atrophy in mice lacking cathepsins B and L, Proc. Natl. Acad. Sci. U. S. A., 99, 7883, 10.1073/pnas.112632299 Koike, 2005, Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease), Am. J. Pathol., 167, 1713, 10.1016/S0002-9440(10)61253-9 Tang, 2006, Murine cathepsin f deficiency causes neuronal lipofuscinosis and late-onset neurological disease, Mol. Cell. Biol., 26, 2309, 10.1128/MCB.26.6.2309-2316.2006 Yoshikawa, 2002, CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis, Genes Cells, 7, 597, 10.1046/j.1365-2443.2002.00539.x Kasper, 2005, Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration, EMBO J., 24, 1079, 10.1038/sj.emboj.7600576 Vesa, 1995, Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis, Nature, 376, 584, 10.1038/376584a0 Camp, 1993, Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras, J. Biol. Chem., 268, 22566, 10.1016/S0021-9258(18)41567-0 Camp, 1994, Molecular cloning and expression of palmitoyl-protein thioesterase, J. Biol. Chem., 269, 23212, 10.1016/S0021-9258(17)31641-1 Lu, 1996, Lipid thioesters derived from acylated proteins accumulate in infantile neuronal ceroid lipofuscinosis: correction of the defect in lymphoblasts by recombinant palmitoyl-protein thioesterase, Proc. Natl. Acad. Sci. U. S. A., 93, 10046, 10.1073/pnas.93.19.10046 Lu, 2002, The effects of lysosomotropic agents on normal and INCL cells provide further evidence for the lysosomal nature of palmitoyl-protein thioesterase function, Biochim. Biophys. Acta, 1583, 35, 10.1016/S1388-1981(02)00158-0 Smotrys, 2004, Palmitoylation of intracellular signaling proteins: regulation and function, Annu. Rev. Biochem., 73, 559, 10.1146/annurev.biochem.73.011303.073954 Soyombo, 1997, Molecular cloning and expression of palmitoyl-protein thioesterase 2 (PPT2), a homolog of lysosomal palmitoyl-protein thioesterase with a distinct substrate specificity, J. Biol. Chem., 272, 27456, 10.1074/jbc.272.43.27456 Soyombo, 1999, Structure of the human palmitoyl-protein thioesterase-2 gene (PPT2) in the major histocompatibility complex on chromosome 6p21.3, Genomics, 56, 208, 10.1006/geno.1998.5703 Gupta, 2003, Disruption of PPT2 in mice causes an unusual lysosomal storage disorder with neurovisceral features, Proc. Natl. Acad. Sci. U. S. A., 100, 12325, 10.1073/pnas.2033229100 Camp, 1995, Assay and isolation of palmitoyl-protein thioesterase from bovine brain using palmitoylated H-Ras as substrate, Methods Enzymol., 250, 336, 10.1016/0076-6879(95)50083-9 Das, 2000, Structural basis for the insensitivity of a serine enzyme (palmitoyl-protein thioesterase) to phenylmethylsulfonyl fluoride, J. Biol. Chem., 275, 23847, 10.1074/jbc.M002758200 Schriner, 1996, cDNA and genomic cloning of human palmitoyl-protein thioesterase (PPT), the enzyme defective in infantile neuronal ceroid lipofuscinosis, Genomics, 34, 317, 10.1006/geno.1996.0292 Verkruyse, 1996, Lysosomal targeting of palmitoyl-protein thioesterase, J. Biol. Chem., 271, 15831, 10.1074/jbc.271.26.15831 Bellizzi, 2000, The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis, Proc. Natl. Acad. Sci. U. S. A., 97, 4573, 10.1073/pnas.080508097 Hellsten, 1996, Human palmitoyl protein thioesterase: evidence for lysosomal targeting of the enzyme and disturbed cellular routing in infantile neuronal ceroid lipofuscinosis, EMBO J., 15, 5240, 10.1002/j.1460-2075.1996.tb00909.x Sleat, 1996, Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis, J. Biol. Chem., 271, 19191, 10.1074/jbc.271.32.19191 Sleat, 2005, The human brain mannose 6-phosphate glycoproteome: a complex mixture composed of multiple isoforms of many soluble lysosomal proteins, Proteomics, 5, 1520, 10.1002/pmic.200401054 Chataway, 1998, Two-dimensional mapping and microsequencing of lysosomal proteins from human placenta, Placenta, 19, 643, 10.1016/S0143-4004(98)90026-1 Garin, 2001, The phagosome proteome: insight into phagosome functions, J. Cell Biol., 152, 165, 10.1083/jcb.152.1.165 Fojan, 2000, What distinguishes an esterase from a lipase: a novel structural approach, Biochimie, 82, 1033, 10.1016/S0300-9084(00)01188-3 Jalanko, 2005, Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons, Neurobiol. Dis., 18, 226, 10.1016/j.nbd.2004.08.013 Lian, 2005, Neutral lipids and peroxisome proliferator-activated receptor-{gamma} control pulmonary gene expression and inflammation-triggered pathogenesis in lysosomal acid lipase knockout mice, Am. J. Pathol., 167, 813, 10.1016/S0002-9440(10)62053-6 Dhami, 2006, Identification of novel biomarkers for Niemann–Pick disease using gene expression analysis of Acid sphingomyelinase knockout mice, Mol. Ther., 13, 556, 10.1016/j.ymthe.2005.08.020 Ohmi, 2003, Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB, Proc. Natl. Acad. Sci. U. S. A., 100, 1902, 10.1073/pnas.252784899 Wada, 2000, Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation, Proc. Natl. Acad. Sci. U. S. A., 97, 10954, 10.1073/pnas.97.20.10954 Bible, 2004, Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis, Neurobiol. Dis., 16, 346, 10.1016/j.nbd.2004.02.010 Tyynela, 1995, Sphingolipid activator proteins in the neuronal ceroid-lipofuscinoses: an immunological study, Acta Neuropathol. (Berl.), 89, 391, 10.1007/BF00307641 Lu, 2006, Inefficient cleavage of palmitoyl-protein thioesterase (PPT) substrates by aminothiols: implications for treatment of infantile neuronal ceroid lipofuscinosis, J. Inherit. Metab. Dis., 29, 119, 10.1007/s10545-006-0225-z Cho, 2000, Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells, J. Neurochem., 74, 1478, 10.1046/j.1471-4159.2000.0741478.x Cho, 2000, Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells, J. Neurosci. Res., 62, 234, 10.1002/1097-4547(20001015)62:2<234::AID-JNR8>3.0.CO;2-8 Dawson, 2002, Anti-tumor promoting effects of palmitoyl: protein thioesterase inhibitors against a human neurotumor cell line, Cancer Lett., 187, 163, 10.1016/S0304-3835(02)00403-2 Goswami, 2005, Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2, J. Neurosci. Res., 81, 208, 10.1002/jnr.20549 Riikonen, 2000, CSF insulin-like growth factor-1 in infantile neuronal ceroid lipofuscinosis, Neurology, 54, 1828, 10.1212/WNL.54.9.1828 Korey, 2003, An over-expression system for characterizing Ppt1 function in Drosophila, BMC Neurosci., 4, 30, 10.1186/1471-2202-4-30 Ahtiainen, 2003, Palmitoyl protein thioesterase 1 is targeted to the axons in neurons, J. Comp. Neurol., 455, 368, 10.1002/cne.10492 Heinonen, 2000, Expression of palmitoyl protein thioesterase in neurons, Mol. Genet. Metab., 69, 123, 10.1006/mgme.2000.2961 Lehtovirta, 2001, Palmitoyl protein thioesterase (PPT) localizes into synaptosomes and synaptic vesicles in neurons: implications for infantile neuronal ceroid lipofuscinosis (INCL), Hum. Mol. Genet., 10, 69, 10.1093/hmg/10.1.69 Virmani, 2005, Progressively reduced synaptic vesicle pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1 knockout mice, Neurobiol. Dis., 20, 314, 10.1016/j.nbd.2005.03.012 Gupta, 2001, Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice, Proc. Natl. Acad. Sci. U. S. A., 98, 13566, 10.1073/pnas.251485198 Zhang, 2006, Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL, Hum. Mol. Genet., 15, 337, 10.1093/hmg/ddi451 Harding, 2002, Transcriptional and translational control in the Mammalian unfolded protein response, Annu. Rev. Cell Dev. Biol., 18, 575, 10.1146/annurev.cellbio.18.011402.160624 Schroder, 2005, The mammalian unfolded protein response, Annu. Rev. Biochem., 74, 739, 10.1146/annurev.biochem.73.011303.074134 Tessitore, 2004, GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis, Mol. Cell, 15, 753, 10.1016/j.molcel.2004.08.029 Sleat, 1997, Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis, Science, 277, 1802, 10.1126/science.277.5333.1802 Sohar, 1999, Biochemical characterization of a lysosomal protease deficient in classical late infantile neuronal ceroid lipofuscinosis (LINCL) and development of an enzyme-based assay for diagnosis and exclusion of LINCL in human specimens and animal models, J. Neurochem., 73, 700, 10.1046/j.1471-4159.1999.0730700.x Rawlings, 1999, Tripeptidyl-peptidase I is apparently the CLN2 protein absent in classical late-infantile neuronal ceroid lipofuscinosis, Biochim. Biophys. Acta, 1429, 496, 10.1016/S0167-4838(98)00238-6 Vines, 1999, Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I, FEBS Lett., 443, 131, 10.1016/S0014-5793(98)01683-4 Vines, 1998, Purification and characterisation of a tripeptidyl aminopeptidase I from rat spleen, Biochim. Biophys. Acta, 1384, 233, 10.1016/S0167-4838(98)00012-0 Tomkinson, 1999, Tripeptidyl peptidases: enzymes that count, Trends Biochem. Sci., 24, 355, 10.1016/S0968-0004(99)01435-8 Doebber, 1978, Identification of a tripeptidyl aminopeptidase in the anterior pituitary gland: effect on the chemical and biological properties of rat and bovine growth hormones, Endocrinology, 103, 1794, 10.1210/endo-103-5-1794 McDonald, 1985, Partial purification and characterization of an ovarian tripeptidyl peptidase: a lysosomal exopeptidase that sequentially releases collagen-related (Gly–Pro-X) triplets, Biochem. Biophys. Res. Commun., 126, 63, 10.1016/0006-291X(85)90571-6 Andersen, 1987, Subcellular distribution of renal tripeptide-releasing exopeptidases active on collagen-like sequences, Am. J. Physiol., 252, F890 Lin, 2001, Production and characterization of recombinant human CLN2 protein for enzyme-replacement therapy in late infantile neuronal ceroid lipofuscinosis, Biochem. J., 357, 49, 10.1042/0264-6021:3570049 Tomkinson, 2005, Tripeptidyl-peptidase II: a multi-purpose peptidase, Int. J. Biochem. Cell Biol., 37, 1933, 10.1016/j.biocel.2005.02.009 Lin, 2001, The human CLN2 protein/tripeptidyl-peptidase I is a serine protease that autoactivates at acidic pH, J. Biol. Chem., 276, 2249, 10.1074/jbc.M008562200 Golabek, 2004, Maturation of human tripeptidyl-peptidase I in vitro, J. Biol. Chem., 279, 31058, 10.1074/jbc.M400700200 Ezaki, 2000, Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis, Biochem. Biophys. Res. Commun., 268, 904, 10.1006/bbrc.2000.2207 Comellas-Bigler, 2002, The 1.4 a crystal structure of kumamolysin: a thermostable serine-carboxyl-type proteinase, Structure, 10, 865, 10.1016/S0969-2126(02)00772-4 Wlodawer, 2001, Carboxyl proteinase from Pseudomonas defines a novel family of subtilisin-like enzymes, Nat. Struct. Biol., 8, 442, 10.1038/87610 Wlodawer, 2003, A model of tripeptidyl-peptidase I (CLN2), a ubiquitous and highly conserved member of the sedolisin family of serine-carboxyl peptidases, BMC Struct. Biol., 3, 8, 10.1186/1472-6807-3-8 Oyama, 2005, Catalytic residues and substrate specificity of recombinant human tripeptidyl peptidase I (CLN2), J. Biochem. (Tokyo), 138, 127, 10.1093/jb/mvi110 Walus, 2005, Ser475, Glu272, Asp276, Asp327, and Asp360 are involved in catalytic activity of human tripeptidyl-peptidase I, FEBS Lett., 579, 1383, 10.1016/j.febslet.2005.01.035 Wujek, 2004, N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I, J. Biol. Chem., 279, 12827, 10.1074/jbc.M313173200 Golabek, 2003, Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I, J. Biol. Chem., 278, 7135, 10.1074/jbc.M211872200 Tsiakas, 2004, Mutation of the glycosylated asparagine residue 286 in human CLN2 protein results in loss of enzymatic activity, Glycobiology, 14, 1C, 10.1093/glycob/cwh054 Tian, 2006, Determination of the substrate specificity of tripeptidyl-peptidase I using combinatorial peptide libraries and development of improved fluorogenic substrates, J. Biol. Chem., 281, 6559, 10.1074/jbc.M507336200 Watanabe, 1992, Acidic tripeptidyl aminopeptidase in rat liver tritosomes: partial purification and determination of its primary substrate specificity, Biochem. Int., 27, 869 Koike, 2002, The expression of tripeptidyl peptidase I in various tissues of rats and mice, Arch. Histol. Cytol., 65, 219, 10.1679/aohc.65.219 Suopanki, 2000, Developmental changes in the expression of neuronal ceroid lipofuscinoses-linked proteins, Mol. Genet. Metab., 71, 190, 10.1006/mgme.2000.3071 Du, 2001, Rat tripeptidyl peptidase I: molecular cloning, functional expression, tissue localization and enzymatic characterization, Biol. Chem., 382, 1715, 10.1515/BC.2001.207 Kurachi, 2001, Distribution and development of CLN2 protein, the late-infantile neuronal ceroid lipofuscinosis gene product, Acta Neuropathol. (Berl.), 102, 20, 10.1007/s004010000321 Kida, 2001, Distribution of tripeptidyl peptidase I in human tissues under normal and pathological conditions, J. Neuropathol. Exp. Neurol., 60, 280, 10.1093/jnen/60.3.280 Chattopadhyay, 2000, Neural and extraneural expression of the neuronal ceroid lipofuscinoses genes CLN1, CLN2, and CLN3: functional implications for CLN3, Mol. Genet. Metab., 71, 207, 10.1006/mgme.2000.3056 Kopan, 2004, The lysosomal degradation of neuromedin B is dependent on tripeptidyl peptidase-I: evidence for the impairment of neuropeptide degradation in late-infantile neuronal ceroid lipofuscinosis, Biochem. Biophys. Res. Commun., 319, 58, 10.1016/j.bbrc.2004.04.142 Bernardini, 2002, Lysosomal degradation of cholecystokinin-(29–33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis, Biochem. J., 366, 521, 10.1042/bj20020467 Warburton, 2002, Tripeptidyl peptidase-I is essential for the degradation of sulphated cholecystokinin-8 (CCK-8S) by mouse brain lysosomes, Neurosci. Lett., 331, 99, 10.1016/S0304-3940(02)00841-8 Palmer, 1992, Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease), Am. J. Med. Genet., 42, 561, 10.1002/ajmg.1320420428 Ezaki, 1999, A lysosomal proteinase, the late infantile neuronal ceroid lipofuscinosis gene (CLN2) product, is essential for degradation of a hydrophobic protein, the subunit c of ATP synthase, J. Neurochem., 72, 2573, 10.1046/j.1471-4159.1999.0722573.x Ezaki, 2000, Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase, J. Biochem. (Tokyo), 128, 509, 10.1093/oxfordjournals.jbchem.a022781 Kominami, 2002, What are the requirements for lysosomal degradation of subunit c of mitochondrial ATPase?, IUBMB Life, 54, 89 Holopainen, 2001, Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs), Eur. J. Biochem., 268, 5851, 10.1046/j.0014-2956.2001.02530.x 1995, Isolation of a novel gene underlying Batten disease, CLN3. The International Batten Disease Consortium, Cell, 82, 949, 10.1016/0092-8674(95)90274-0 Jarvela, 1998, Biosynthesis and intracellular targeting of the CLN3 protein defective in Batten disease, Hum. Mol. Genet., 7, 85, 10.1093/hmg/7.1.85 Kida, 1999, Analysis of intracellular distribution and trafficking of the CLN3 protein in fusion with the green fluorescent protein in vitro, Mol. Genet. Metab., 66, 265, 10.1006/mgme.1999.2837 Kremmidiotis, 1999, The Batten disease gene product (CLN3p) is a Golgi integral membrane protein, Hum. Mol. Genet., 8, 523, 10.1093/hmg/8.3.523 Persaud-Sawin, 2004, A galactosylceramide binding domain is involved in trafficking of CLN3 from Golgi to rafts via recycling endosomes, Pediatr. Res., 56, 449, 10.1203/01.PDR.0000136152.54638.95 Katz, 1997, Immunochemical localization of the Batten disease (CLN3) protein in retina, Invest. Ophthalmol. Visual Sci., 38, 2375 Rakheja, 2004, CLN3P, the Batten disease protein, localizes to membrane lipid rafts (detergent-resistant membranes), Biochem. Biophys. Res. Commun., 317, 988, 10.1016/j.bbrc.2004.03.146 Ezaki, 2003, Characterization of Cln3p, the gene product responsible for juvenile neuronal ceroid lipofuscinosis, as a lysosomal integral membrane glycoprotein, J. Neurochem., 87, 1296, 10.1046/j.1471-4159.2003.02132.x Kyttala, 2004, Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells, Mol. Biol. Cell, 15, 1313, 10.1091/mbc.E03-02-0120 Jarvela, 1999, Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL), Hum. Mol. Genet., 8, 1091, 10.1093/hmg/8.6.1091 Luiro, 2001, CLN3 protein is targeted to neuronal synapses but excluded from synaptic vesicles: new clues to Batten disease, Hum. Mol. Genet., 10, 2123, 10.1093/hmg/10.19.2123 Haskell, 2000, Batten disease: evaluation of CLN3 mutations on protein localization and function, Hum. Mol. Genet., 9, 735, 10.1093/hmg/9.5.735 Janes, 1996, A model for Batten disease protein CLN3: functional implications from homology and mutations, FEBS Lett., 399, 75, 10.1016/S0014-5793(96)01290-2 Fossale, 2004, Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis, BMC Neurosci., 5, 57, 10.1186/1471-2202-5-57 Das, 2001, Altered levels of high-energy phosphate compounds in fibroblasts from different forms of neuronal ceroid lipofuscinoses: further evidence for mitochondrial involvement, Eur. J. Paediatr. Neurol., 5, 143, 10.1053/ejpn.2000.0451 Cotman, 2002, Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth, Hum. Mol. Genet., 11, 2709, 10.1093/hmg/11.22.2709 Narayan, 2004, CLN3L, a novel protein related to the Batten disease protein, is overexpressed in Cln3−/− mice and in Batten disease, Brain, 127, 1748, 10.1093/brain/awh195 Pearce, 1998, A yeast model for the study of Batten disease, Proc. Natl. Acad. Sci. U. S. A., 95, 6915, 10.1073/pnas.95.12.6915 Pearce, 1999, Investigation of Batten disease with the yeast Saccharomyces cerevisiae, Mol. Genet. Metab., 66, 314, 10.1006/mgme.1999.2820 Pearce, 1999, Action of BTN1, the yeast orthologue of the gene mutated in Batten disease, Nat. Genet., 22, 55, 10.1038/8861 Golabek, 2000, CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer's amyloid-beta protein precursor and cathepsin D in human cells, Mol. Genet. Metab., 70, 203, 10.1006/mgme.2000.3006 Gachet, 2005, btn1, the Schizosaccharomyces pombe homologue of the human Batten disease gene CLN3, regulates vacuole homeostasis, J. Cell Sci., 118, 5525, 10.1242/jcs.02656 Ramirez-Montealegre, 2005, Defective lysosomal arginine transport in juvenile Batten disease, Hum. Mol. Genet., 14, 3759, 10.1093/hmg/ddi406 Padilla-Lopez, 2006, Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity in order to regulate pH imbalance in the vacuole, J. Biol. Chem., 281, 10273, 10.1074/jbc.M510625200 Luiro, 2004, Interconnections of CLN3, Hook1 and Rab proteins link Batten disease to defects in the endocytic pathway, Hum. Mol. Genet., 13, 3017, 10.1093/hmg/ddh321 Mao, 2003, Membrane topology of CLN3, the protein underlying Batten disease, FEBS Lett., 541, 40, 10.1016/S0014-5793(03)00284-9 Baldwin, 2004, The equilibrative nucleoside transporter family, SLC29, Pflugers Arch., 447, 735, 10.1007/s00424-003-1103-2 Kramer, 1996, Mutations in the Drosophila hook gene inhibit endocytosis of the boss transmembrane ligand into multivesicular bodies, J. Cell Biol., 133, 1205, 10.1083/jcb.133.6.1205 Kramer, 1999, Genetic analysis of hook, a gene required for endocytic trafficking in drosophila, Genetics, 151, 675, 10.1093/genetics/151.2.675 Chattopadhyay, 2002, Interaction with Btn2p is required for localization of Rsglp: Btn2p-mediated changes in arginine uptake in Saccharomyces cerevisiae, Eukaryotic Cell, 1, 606, 10.1128/EC.1.4.606-612.2002 Kim, 2003, A role in vacuolar arginine transport for yeast Btn1p and for human CLN3, the protein defective in Batten disease, Proc. Natl. Acad. Sci. U. S. A., 100, 15458, 10.1073/pnas.2136651100 Pisoni, 1987, Important differences in cationic amino acid transport by lysosomal system c and system y+ of the human fibroblast, J. Biol. Chem., 262, 15011, 10.1016/S0021-9258(18)48130-6 Pearce, 2003, Altered amino acid levels in sera of a mouse model for juvenile neuronal ceroid lipofuscinoses, Clin. Chim. Acta, 332, 145, 10.1016/S0009-8981(03)00122-0 Lange, 2004, Novel roles for arginase in cell survival, regeneration, and translation in the central nervous system, J. Nutr., 134, 2812S, 10.1093/jn/134.10.2812S Chattopadhyay, 2002, An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease, Hum. Mol. Genet., 11, 1421, 10.1093/hmg/11.12.1421 Kim, 2005, Interaction among Btn1p, Btn2p, and Ist2p reveals potential interplay among the vacuole, amino acid levels, and ion homeostasis in the yeast Saccharomyces cerevisiae, Eukaryotic Cell, 4, 281, 10.1128/EC.4.2.281-288.2005 Vesa, 2002, Neuronal ceroid lipofuscinoses are connected at molecular level: interaction of CLN5 protein with CLN2 and CLN3, Mol. Biol. Cell, 13, 2410, 10.1091/mbc.E02-01-0031 Storch, 2004, A dileucine motif and a cluster of acidic amino acids in the second cytoplasmic domain of the batten disease-related CLN3 protein are required for efficient lysosomal targeting, J. Biol. Chem., 279, 53625, 10.1074/jbc.M410930200 Kyttala, 2005, AP-1 and AP-3 facilitate lysosomal targeting of Batten disease protein CLN3 via its dileucine motif, J. Biol. Chem., 280, 10277, 10.1074/jbc.M411862200 Weimer, 2006, Visual deficits in a mouse model of Batten disease are the result of optic nerve degeneration and loss of dorsal lateral geniculate thalamic neurons, Neurobiol. Dis., 22, 284, 10.1016/j.nbd.2005.11.008 Walenta, 2001, The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins, J. Cell Biol., 152, 923, 10.1083/jcb.152.5.923 Weimer, 2005, Elevation of Hook1 in a disease model of Batten disease does not affect a novel interaction between Ankyrin G and Hook1, Biochem. Biophys. Res. Commun., 330, 1176, 10.1016/j.bbrc.2005.03.103 Hryniewicz-Jankowska, 2002, Ankyrins, multifunctional proteins involved in many cellular pathways, Folia Histochem. Cytobiol., 40, 239 Roy, 2005, Axonal transport defects: a common theme in neurodegenerative diseases, Acta Neuropathol. (Berl.), 109, 5, 10.1007/s00401-004-0952-x Lane, 1996, Apoptosis as the mechanism of neurodegeneration in Batten's disease, J. Neurochem., 67, 677, 10.1046/j.1471-4159.1996.67020677.x Seigel, 2002, Retinal pathology and function in a Cln3 knockout mouse model of juvenile neuronal ceroid lipofuscinosis (Batten disease), Mol. Cell. Neurosci., 19, 515, 10.1006/mcne.2001.1099 Persaud-Sawin, 2005, Cell death pathways in juvenile Batten disease, Apoptosis, 10, 973, 10.1007/s10495-005-0733-6 Persaud-Sawin, 2002, Motifs within the CLN3 protein: modulation of cell growth rates and apoptosis, Hum. Mol. Genet., 11, 2129, 10.1093/hmg/11.18.2129 Puranam, 1999, CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide, Mol. Genet. Metab., 66, 294, 10.1006/mgme.1999.2834 Rylova, 2002, The CLN3 gene is a novel molecular target for cancer drug discovery, Cancer Res., 62, 801 Savukoski, 1998, CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis, Nat. Genet., 19, 286, 10.1038/975 Isosomppi, 2002, Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein, Hum. Mol. Genet., 11, 885, 10.1093/hmg/11.8.885 Kollmann, 2005, Identification of novel lysosomal matrix proteins by proteome analysis, Proteomics, 5, 3966, 10.1002/pmic.200401247 Tyynela, 1997, Variant late infantile neuronal ceroid-lipofuscinosis: pathology and biochemistry, J. Neuropathol. Exp. Neurol., 56, 369, 10.1097/00005072-199704000-00005 Holmberg, 2004, The mouse ortholog of the neuronal ceroid lipofuscinosis CLN5 gene encodes a soluble lysosomal glycoprotein expressed in the developing brain, Neurobiol. Dis., 16, 29, 10.1016/j.nbd.2003.12.019 Kopra, 2004, A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals neuropathology associated with early aging, Hum. Mol. Genet., 13, 2893, 10.1093/hmg/ddh312 Gao, 2002, Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse, Am. J. Hum. Genet., 70, 324, 10.1086/338190 Wheeler, 2002, The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein, Am. J. Hum. Genet., 70, 537, 10.1086/338708 Heine, 2004, Defective endoplasmic reticulum-resident membrane protein CLN6 affects lysosomal degradation of endocytosed arylsulfatase A, J. Biol. Chem., 279, 22347, 10.1074/jbc.M400643200 Mole, 2004, CLN6, which is associated with a lysosomal storage disease, is an endoplasmic reticulum protein, Exp. Cell Res., 298, 399, 10.1016/j.yexcr.2004.04.042 Bronson, 1998, Neuronal ceroid lipofuscinosis (nclf), a new disorder of the mouse linked to chromosome 9, Am. J. Med. Genet., 77, 289, 10.1002/(SICI)1096-8628(19980526)77:4<289::AID-AJMG8>3.0.CO;2-I Jolly, 1989, Ceroid-lipofuscinosis (Batten's disease): pathogenesis and sequential neuropathological changes in the ovine model, Neuropathol. Appl. Neurobiol., 15, 371, 10.1111/j.1365-2990.1989.tb01236.x Oswald, 2005, Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6), Neurobiol. Dis., 20, 49, 10.1016/j.nbd.2005.01.025 Heine, 2003, Enhanced expression of manganese-dependent superoxide dismutase in human and sheep CLN6 tissues, Biochem. J., 376, 369, 10.1042/bj20030598 Yoshioka, 1994, Oxidants induce transcriptional activation of manganese superoxide dismutase in glomerular cells, Kidney Int., 46, 405, 10.1038/ki.1994.288 Visner, 1990, Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response, J. Biol. Chem., 265, 2856, 10.1016/S0021-9258(19)39880-1 Hirvasniemi, 1994, Neuroradiological findings in the northern epilepsy syndrome, Acta Neurol. Scand., 90, 388, 10.1111/j.1600-0404.1994.tb02746.x Hirvasniemi, 1995, Northern epilepsy syndrome: clinical course and the effect of medication on seizures, Epilepsia, 36, 792, 10.1111/j.1528-1157.1995.tb01616.x Ranta, 1999, The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8, Nat. Genet., 23, 233, 10.1038/13868 Lonka, 2005, The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy, BMC Neurosci., 6, 27, 10.1186/1471-2202-6-27 Lonka, 2000, The neuronal ceroid lipofuscinosis CLN8 membrane protein is a resident of the endoplasmic reticulum, Hum. Mol. Genet., 9, 1691, 10.1093/hmg/9.11.1691 Lonka, 2004, Localization of wild-type and mutant neuronal ceroid lipofuscinosis CLN8 proteins in non-neuronal and neuronal cells, J. Neurosci. Res., 76, 862, 10.1002/jnr.20133 Winter, 2002, TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains?, Trends Biochem. Sci., 27, 381, 10.1016/S0968-0004(02)02154-0 Hegde, 1998, TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum, Cell, 92, 621, 10.1016/S0092-8674(00)81130-7 Barz, 1999, Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins, Mol. Biol. Cell, 10, 1043, 10.1091/mbc.10.4.1043 Heinrich, 2000, The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain, Cell, 102, 233, 10.1016/S0092-8674(00)00028-3 Guillas, 2001, C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p, EMBO J., 20, 2655, 10.1093/emboj/20.11.2655 Schorling, 2001, Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisiae, Mol. Biol. Cell, 12, 3417, 10.1091/mbc.12.11.3417 Mizutani, 2005, Mammalian Lass6 and its related family members regulate synthesis of specific ceramides, Biochem. J., 390, 263, 10.1042/BJ20050291 Riebeling, 2003, Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors, J. Biol. Chem., 278, 43452, 10.1074/jbc.M307104200 Venkataraman, 2002, Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells, J. Biol. Chem., 277, 35642, 10.1074/jbc.M205211200 Schulz, 2004, Impaired cell adhesion and apoptosis in a novel CLN9 Batten disease variant, Ann. Neurol., 56, 342, 10.1002/ana.20187 Schulz, 2006, The CLN9 protein, a regulator of dihydroceramide synthase, J. Biol. Chem., 281, 2784, 10.1074/jbc.M509483200 Hermansson, 2005, Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation. EPMR, brain: a case study, J. Neurochem., 95, 609, 10.1111/j.1471-4159.2005.03376.x Kakela, 2003, Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry, J. Neurochem., 84, 1051, 10.1046/j.1471-4159.2003.01602.x Messer, 1986, Autosomal dominance in a late-onset motor neuron disease in the mouse, J. Neurogenet., 3, 345, 10.3109/01677068609106858 Vance, 1997, Abnormalities in mitochondria-associated membranes and phospholipid biosynthetic enzymes in the mnd/mnd mouse model of neuronal ceroid lipofuscinosis, Biochim. Biophys. Acta, 1344, 286, 10.1016/S0005-2760(96)00153-1 Griffin, 2002, Vitamin E deficiency and metabolic deficits in neuronal ceroid lipofuscinosis described by bioinformatics, Physiol. Genomics, 11, 195, 10.1152/physiolgenomics.00100.2002 Bertamini, 2002, Mitochondrial oxidative metabolism in motor neuron degeneration (mnd) mouse central nervous system, Eur. J. Neurosci., 16, 2291, 10.1046/j.1460-9568.2002.02299.x Guarneri, 2004, Retinal oxidation, apoptosis and age- and sex-differences in the mnd mutant mouse, a model of neuronal ceroid lipofuscinosis, Brain Res., 1014, 209, 10.1016/j.brainres.2004.04.040 Battaglioli, 1993, Synaptosomal glutamate uptake declines progressively in the spinal cord of a mutant mouse with motor neuron disease, J. Neurochem., 60, 1567, 10.1111/j.1471-4159.1993.tb03323.x Mennini, 1998, Spinal cord GLT-1 glutamate transporter and blood glutamic acid alterations in motor neuron degeneration (Mnd) mice, J. Neurol. Sci., 157, 31, 10.1016/S0022-510X(98)00072-0 Mennini, 2002, Expression of glutamate receptor subtypes in the spinal cord of control and mnd mice, a model of motor neuron disorder, J. Neurosci. Res., 70, 553, 10.1002/jnr.10420 Koike, 2003, Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice, Mol. Cell. Neurosci., 22, 146, 10.1016/S1044-7431(03)00035-6 Saftig, 1995, Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells, EMBO J., 14, 3599, 10.1002/j.1460-2075.1995.tb00029.x Myllykangas, 2005, Cathepsin d-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses, Neurobiol. Dis., 19, 194, 10.1016/j.nbd.2004.12.019 Augereau, 1994, Characterization of the proximal estrogen-responsive element of human cathepsin D gene, Mol. Endocrinol., 8, 693 Tang, 1987, Evolution in the structure and function of aspartic proteases, J. Cell. Biochem., 33, 53, 10.1002/jcb.240330106 Erickson, 1981, Biosynthesis of a lysosomal enzyme. Partial structure of two transient and functionally distinct NH2-terminal sequences in cathepsin D, J. Biol. Chem., 256, 11224, 10.1016/S0021-9258(19)68581-9 Gieselmann, 1983, Biosynthesis and transport of cathepsin D in cultured human fibroblasts, J. Cell Biol., 97, 1, 10.1083/jcb.97.1.1 Hasilik, 1980, Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight, J. Biol. Chem., 255, 4937, 10.1016/S0021-9258(19)85585-0 Rijnboutt, 1992, Identification of subcellular compartments involved in biosynthetic processing of cathepsin D, J. Biol. Chem., 267, 15665, 10.1016/S0021-9258(19)49587-2 Gieselmann, 1985, Processing of human cathepsin D in lysosomes in vitro, J. Biol. Chem., 260, 3215, 10.1016/S0021-9258(18)89493-5 Kobayashi, 1992, Proteolytic processing sites producing the mature form of human cathepsin D, Int. J. Biochem., 24, 1487, 10.1016/0020-711X(92)90076-D Storch, 2005, Transport of lysosomal enzymes, 17 Metcalf, 1993, Two crystal structures for cathepsin D: the lysosomal targeting signal and active site, EMBO J., 12, 1293, 10.1002/j.1460-2075.1993.tb05774.x Junaid, 1999, Increased brain lysosomal pepstatin-insensitive proteinase activity in patients with neurodegenerative diseases, Neurosci. Lett., 264, 157, 10.1016/S0304-3940(99)00095-6 Dhar, 2002, Flupirtine blocks apoptosis in batten patient lymphoblasts and in human postmitotic CLN3- and CLN2-deficient neurons, Ann. Neurol., 51, 448, 10.1002/ana.10143 Stroikin, 2004, Inhibition of autophagy with 3-methyladenine results in impaired turnover of lysosomes and accumulation of lipofuscin-like material, Eur. J. Cell Biol., 83, 583, 10.1078/0171-9335-00433