Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins
Tài liệu tham khảo
Cooper, 2003, Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis, Curr. Opin. Neurol., 16, 121, 10.1097/00019052-200304000-00001
Haltia, 2003, The neuronal ceroid-lipofuscinoses, J. Neuropathol. Exp. Neurol., 62, 1, 10.1093/jnen/62.1.1
Mitchison, 2004, Selectivity and types of cell death in the neuronal ceroid lipofuscinoses, Brain Pathol., 14, 86, 10.1111/j.1750-3639.2004.tb00502.x
Weimer, 2002, The neuronal ceroid lipofuscinoses: mutations in different proteins result in similar disease, Neuromol. Med., 1, 111, 10.1385/NMM:1:2:111
Tyynela, 2000, A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration, EMBO J., 19, 2786, 10.1093/emboj/19.12.2786
Koike, 2000, Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons, J. Neurosci., 20, 6898, 10.1523/JNEUROSCI.20-18-06898.2000
Awano, 2006, A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis, Mol. Genet. Metab., 341, 10.1016/j.ymgme.2005.11.005
Siintola, 2006, Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis, Brain, 10.1093/brain/awl107
Steinfeld, 2006, Cathepsin d deficiency is associated with a human neurodegenerative disorder, Am. J. Hum. Genet., 78, 988, 10.1086/504159
Felbor, 2002, Neuronal loss and brain atrophy in mice lacking cathepsins B and L, Proc. Natl. Acad. Sci. U. S. A., 99, 7883, 10.1073/pnas.112632299
Koike, 2005, Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease), Am. J. Pathol., 167, 1713, 10.1016/S0002-9440(10)61253-9
Tang, 2006, Murine cathepsin f deficiency causes neuronal lipofuscinosis and late-onset neurological disease, Mol. Cell. Biol., 26, 2309, 10.1128/MCB.26.6.2309-2316.2006
Yoshikawa, 2002, CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis, Genes Cells, 7, 597, 10.1046/j.1365-2443.2002.00539.x
Kasper, 2005, Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration, EMBO J., 24, 1079, 10.1038/sj.emboj.7600576
Vesa, 1995, Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis, Nature, 376, 584, 10.1038/376584a0
Camp, 1993, Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras, J. Biol. Chem., 268, 22566, 10.1016/S0021-9258(18)41567-0
Camp, 1994, Molecular cloning and expression of palmitoyl-protein thioesterase, J. Biol. Chem., 269, 23212, 10.1016/S0021-9258(17)31641-1
Lu, 1996, Lipid thioesters derived from acylated proteins accumulate in infantile neuronal ceroid lipofuscinosis: correction of the defect in lymphoblasts by recombinant palmitoyl-protein thioesterase, Proc. Natl. Acad. Sci. U. S. A., 93, 10046, 10.1073/pnas.93.19.10046
Lu, 2002, The effects of lysosomotropic agents on normal and INCL cells provide further evidence for the lysosomal nature of palmitoyl-protein thioesterase function, Biochim. Biophys. Acta, 1583, 35, 10.1016/S1388-1981(02)00158-0
Smotrys, 2004, Palmitoylation of intracellular signaling proteins: regulation and function, Annu. Rev. Biochem., 73, 559, 10.1146/annurev.biochem.73.011303.073954
Soyombo, 1997, Molecular cloning and expression of palmitoyl-protein thioesterase 2 (PPT2), a homolog of lysosomal palmitoyl-protein thioesterase with a distinct substrate specificity, J. Biol. Chem., 272, 27456, 10.1074/jbc.272.43.27456
Soyombo, 1999, Structure of the human palmitoyl-protein thioesterase-2 gene (PPT2) in the major histocompatibility complex on chromosome 6p21.3, Genomics, 56, 208, 10.1006/geno.1998.5703
Gupta, 2003, Disruption of PPT2 in mice causes an unusual lysosomal storage disorder with neurovisceral features, Proc. Natl. Acad. Sci. U. S. A., 100, 12325, 10.1073/pnas.2033229100
Camp, 1995, Assay and isolation of palmitoyl-protein thioesterase from bovine brain using palmitoylated H-Ras as substrate, Methods Enzymol., 250, 336, 10.1016/0076-6879(95)50083-9
Das, 2000, Structural basis for the insensitivity of a serine enzyme (palmitoyl-protein thioesterase) to phenylmethylsulfonyl fluoride, J. Biol. Chem., 275, 23847, 10.1074/jbc.M002758200
Schriner, 1996, cDNA and genomic cloning of human palmitoyl-protein thioesterase (PPT), the enzyme defective in infantile neuronal ceroid lipofuscinosis, Genomics, 34, 317, 10.1006/geno.1996.0292
Verkruyse, 1996, Lysosomal targeting of palmitoyl-protein thioesterase, J. Biol. Chem., 271, 15831, 10.1074/jbc.271.26.15831
Bellizzi, 2000, The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis, Proc. Natl. Acad. Sci. U. S. A., 97, 4573, 10.1073/pnas.080508097
Hellsten, 1996, Human palmitoyl protein thioesterase: evidence for lysosomal targeting of the enzyme and disturbed cellular routing in infantile neuronal ceroid lipofuscinosis, EMBO J., 15, 5240, 10.1002/j.1460-2075.1996.tb00909.x
Sleat, 1996, Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis, J. Biol. Chem., 271, 19191, 10.1074/jbc.271.32.19191
Sleat, 2005, The human brain mannose 6-phosphate glycoproteome: a complex mixture composed of multiple isoforms of many soluble lysosomal proteins, Proteomics, 5, 1520, 10.1002/pmic.200401054
Chataway, 1998, Two-dimensional mapping and microsequencing of lysosomal proteins from human placenta, Placenta, 19, 643, 10.1016/S0143-4004(98)90026-1
Garin, 2001, The phagosome proteome: insight into phagosome functions, J. Cell Biol., 152, 165, 10.1083/jcb.152.1.165
Fojan, 2000, What distinguishes an esterase from a lipase: a novel structural approach, Biochimie, 82, 1033, 10.1016/S0300-9084(00)01188-3
Jalanko, 2005, Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons, Neurobiol. Dis., 18, 226, 10.1016/j.nbd.2004.08.013
Lian, 2005, Neutral lipids and peroxisome proliferator-activated receptor-{gamma} control pulmonary gene expression and inflammation-triggered pathogenesis in lysosomal acid lipase knockout mice, Am. J. Pathol., 167, 813, 10.1016/S0002-9440(10)62053-6
Dhami, 2006, Identification of novel biomarkers for Niemann–Pick disease using gene expression analysis of Acid sphingomyelinase knockout mice, Mol. Ther., 13, 556, 10.1016/j.ymthe.2005.08.020
Ohmi, 2003, Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB, Proc. Natl. Acad. Sci. U. S. A., 100, 1902, 10.1073/pnas.252784899
Wada, 2000, Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation, Proc. Natl. Acad. Sci. U. S. A., 97, 10954, 10.1073/pnas.97.20.10954
Bible, 2004, Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis, Neurobiol. Dis., 16, 346, 10.1016/j.nbd.2004.02.010
Tyynela, 1995, Sphingolipid activator proteins in the neuronal ceroid-lipofuscinoses: an immunological study, Acta Neuropathol. (Berl.), 89, 391, 10.1007/BF00307641
Lu, 2006, Inefficient cleavage of palmitoyl-protein thioesterase (PPT) substrates by aminothiols: implications for treatment of infantile neuronal ceroid lipofuscinosis, J. Inherit. Metab. Dis., 29, 119, 10.1007/s10545-006-0225-z
Cho, 2000, Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells, J. Neurochem., 74, 1478, 10.1046/j.1471-4159.2000.0741478.x
Cho, 2000, Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells, J. Neurosci. Res., 62, 234, 10.1002/1097-4547(20001015)62:2<234::AID-JNR8>3.0.CO;2-8
Dawson, 2002, Anti-tumor promoting effects of palmitoyl: protein thioesterase inhibitors against a human neurotumor cell line, Cancer Lett., 187, 163, 10.1016/S0304-3835(02)00403-2
Goswami, 2005, Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2, J. Neurosci. Res., 81, 208, 10.1002/jnr.20549
Riikonen, 2000, CSF insulin-like growth factor-1 in infantile neuronal ceroid lipofuscinosis, Neurology, 54, 1828, 10.1212/WNL.54.9.1828
Korey, 2003, An over-expression system for characterizing Ppt1 function in Drosophila, BMC Neurosci., 4, 30, 10.1186/1471-2202-4-30
Ahtiainen, 2003, Palmitoyl protein thioesterase 1 is targeted to the axons in neurons, J. Comp. Neurol., 455, 368, 10.1002/cne.10492
Heinonen, 2000, Expression of palmitoyl protein thioesterase in neurons, Mol. Genet. Metab., 69, 123, 10.1006/mgme.2000.2961
Lehtovirta, 2001, Palmitoyl protein thioesterase (PPT) localizes into synaptosomes and synaptic vesicles in neurons: implications for infantile neuronal ceroid lipofuscinosis (INCL), Hum. Mol. Genet., 10, 69, 10.1093/hmg/10.1.69
Virmani, 2005, Progressively reduced synaptic vesicle pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1 knockout mice, Neurobiol. Dis., 20, 314, 10.1016/j.nbd.2005.03.012
Gupta, 2001, Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice, Proc. Natl. Acad. Sci. U. S. A., 98, 13566, 10.1073/pnas.251485198
Zhang, 2006, Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL, Hum. Mol. Genet., 15, 337, 10.1093/hmg/ddi451
Harding, 2002, Transcriptional and translational control in the Mammalian unfolded protein response, Annu. Rev. Cell Dev. Biol., 18, 575, 10.1146/annurev.cellbio.18.011402.160624
Schroder, 2005, The mammalian unfolded protein response, Annu. Rev. Biochem., 74, 739, 10.1146/annurev.biochem.73.011303.074134
Tessitore, 2004, GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis, Mol. Cell, 15, 753, 10.1016/j.molcel.2004.08.029
Sleat, 1997, Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis, Science, 277, 1802, 10.1126/science.277.5333.1802
Sohar, 1999, Biochemical characterization of a lysosomal protease deficient in classical late infantile neuronal ceroid lipofuscinosis (LINCL) and development of an enzyme-based assay for diagnosis and exclusion of LINCL in human specimens and animal models, J. Neurochem., 73, 700, 10.1046/j.1471-4159.1999.0730700.x
Rawlings, 1999, Tripeptidyl-peptidase I is apparently the CLN2 protein absent in classical late-infantile neuronal ceroid lipofuscinosis, Biochim. Biophys. Acta, 1429, 496, 10.1016/S0167-4838(98)00238-6
Vines, 1999, Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I, FEBS Lett., 443, 131, 10.1016/S0014-5793(98)01683-4
Vines, 1998, Purification and characterisation of a tripeptidyl aminopeptidase I from rat spleen, Biochim. Biophys. Acta, 1384, 233, 10.1016/S0167-4838(98)00012-0
Tomkinson, 1999, Tripeptidyl peptidases: enzymes that count, Trends Biochem. Sci., 24, 355, 10.1016/S0968-0004(99)01435-8
Doebber, 1978, Identification of a tripeptidyl aminopeptidase in the anterior pituitary gland: effect on the chemical and biological properties of rat and bovine growth hormones, Endocrinology, 103, 1794, 10.1210/endo-103-5-1794
McDonald, 1985, Partial purification and characterization of an ovarian tripeptidyl peptidase: a lysosomal exopeptidase that sequentially releases collagen-related (Gly–Pro-X) triplets, Biochem. Biophys. Res. Commun., 126, 63, 10.1016/0006-291X(85)90571-6
Andersen, 1987, Subcellular distribution of renal tripeptide-releasing exopeptidases active on collagen-like sequences, Am. J. Physiol., 252, F890
Lin, 2001, Production and characterization of recombinant human CLN2 protein for enzyme-replacement therapy in late infantile neuronal ceroid lipofuscinosis, Biochem. J., 357, 49, 10.1042/0264-6021:3570049
Tomkinson, 2005, Tripeptidyl-peptidase II: a multi-purpose peptidase, Int. J. Biochem. Cell Biol., 37, 1933, 10.1016/j.biocel.2005.02.009
Lin, 2001, The human CLN2 protein/tripeptidyl-peptidase I is a serine protease that autoactivates at acidic pH, J. Biol. Chem., 276, 2249, 10.1074/jbc.M008562200
Golabek, 2004, Maturation of human tripeptidyl-peptidase I in vitro, J. Biol. Chem., 279, 31058, 10.1074/jbc.M400700200
Ezaki, 2000, Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis, Biochem. Biophys. Res. Commun., 268, 904, 10.1006/bbrc.2000.2207
Comellas-Bigler, 2002, The 1.4 a crystal structure of kumamolysin: a thermostable serine-carboxyl-type proteinase, Structure, 10, 865, 10.1016/S0969-2126(02)00772-4
Wlodawer, 2001, Carboxyl proteinase from Pseudomonas defines a novel family of subtilisin-like enzymes, Nat. Struct. Biol., 8, 442, 10.1038/87610
Wlodawer, 2003, A model of tripeptidyl-peptidase I (CLN2), a ubiquitous and highly conserved member of the sedolisin family of serine-carboxyl peptidases, BMC Struct. Biol., 3, 8, 10.1186/1472-6807-3-8
Oyama, 2005, Catalytic residues and substrate specificity of recombinant human tripeptidyl peptidase I (CLN2), J. Biochem. (Tokyo), 138, 127, 10.1093/jb/mvi110
Walus, 2005, Ser475, Glu272, Asp276, Asp327, and Asp360 are involved in catalytic activity of human tripeptidyl-peptidase I, FEBS Lett., 579, 1383, 10.1016/j.febslet.2005.01.035
Wujek, 2004, N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I, J. Biol. Chem., 279, 12827, 10.1074/jbc.M313173200
Golabek, 2003, Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I, J. Biol. Chem., 278, 7135, 10.1074/jbc.M211872200
Tsiakas, 2004, Mutation of the glycosylated asparagine residue 286 in human CLN2 protein results in loss of enzymatic activity, Glycobiology, 14, 1C, 10.1093/glycob/cwh054
Tian, 2006, Determination of the substrate specificity of tripeptidyl-peptidase I using combinatorial peptide libraries and development of improved fluorogenic substrates, J. Biol. Chem., 281, 6559, 10.1074/jbc.M507336200
Watanabe, 1992, Acidic tripeptidyl aminopeptidase in rat liver tritosomes: partial purification and determination of its primary substrate specificity, Biochem. Int., 27, 869
Koike, 2002, The expression of tripeptidyl peptidase I in various tissues of rats and mice, Arch. Histol. Cytol., 65, 219, 10.1679/aohc.65.219
Suopanki, 2000, Developmental changes in the expression of neuronal ceroid lipofuscinoses-linked proteins, Mol. Genet. Metab., 71, 190, 10.1006/mgme.2000.3071
Du, 2001, Rat tripeptidyl peptidase I: molecular cloning, functional expression, tissue localization and enzymatic characterization, Biol. Chem., 382, 1715, 10.1515/BC.2001.207
Kurachi, 2001, Distribution and development of CLN2 protein, the late-infantile neuronal ceroid lipofuscinosis gene product, Acta Neuropathol. (Berl.), 102, 20, 10.1007/s004010000321
Kida, 2001, Distribution of tripeptidyl peptidase I in human tissues under normal and pathological conditions, J. Neuropathol. Exp. Neurol., 60, 280, 10.1093/jnen/60.3.280
Chattopadhyay, 2000, Neural and extraneural expression of the neuronal ceroid lipofuscinoses genes CLN1, CLN2, and CLN3: functional implications for CLN3, Mol. Genet. Metab., 71, 207, 10.1006/mgme.2000.3056
Kopan, 2004, The lysosomal degradation of neuromedin B is dependent on tripeptidyl peptidase-I: evidence for the impairment of neuropeptide degradation in late-infantile neuronal ceroid lipofuscinosis, Biochem. Biophys. Res. Commun., 319, 58, 10.1016/j.bbrc.2004.04.142
Bernardini, 2002, Lysosomal degradation of cholecystokinin-(29–33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis, Biochem. J., 366, 521, 10.1042/bj20020467
Warburton, 2002, Tripeptidyl peptidase-I is essential for the degradation of sulphated cholecystokinin-8 (CCK-8S) by mouse brain lysosomes, Neurosci. Lett., 331, 99, 10.1016/S0304-3940(02)00841-8
Palmer, 1992, Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease), Am. J. Med. Genet., 42, 561, 10.1002/ajmg.1320420428
Ezaki, 1999, A lysosomal proteinase, the late infantile neuronal ceroid lipofuscinosis gene (CLN2) product, is essential for degradation of a hydrophobic protein, the subunit c of ATP synthase, J. Neurochem., 72, 2573, 10.1046/j.1471-4159.1999.0722573.x
Ezaki, 2000, Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase, J. Biochem. (Tokyo), 128, 509, 10.1093/oxfordjournals.jbchem.a022781
Kominami, 2002, What are the requirements for lysosomal degradation of subunit c of mitochondrial ATPase?, IUBMB Life, 54, 89
Holopainen, 2001, Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs), Eur. J. Biochem., 268, 5851, 10.1046/j.0014-2956.2001.02530.x
1995, Isolation of a novel gene underlying Batten disease, CLN3. The International Batten Disease Consortium, Cell, 82, 949, 10.1016/0092-8674(95)90274-0
Jarvela, 1998, Biosynthesis and intracellular targeting of the CLN3 protein defective in Batten disease, Hum. Mol. Genet., 7, 85, 10.1093/hmg/7.1.85
Kida, 1999, Analysis of intracellular distribution and trafficking of the CLN3 protein in fusion with the green fluorescent protein in vitro, Mol. Genet. Metab., 66, 265, 10.1006/mgme.1999.2837
Kremmidiotis, 1999, The Batten disease gene product (CLN3p) is a Golgi integral membrane protein, Hum. Mol. Genet., 8, 523, 10.1093/hmg/8.3.523
Persaud-Sawin, 2004, A galactosylceramide binding domain is involved in trafficking of CLN3 from Golgi to rafts via recycling endosomes, Pediatr. Res., 56, 449, 10.1203/01.PDR.0000136152.54638.95
Katz, 1997, Immunochemical localization of the Batten disease (CLN3) protein in retina, Invest. Ophthalmol. Visual Sci., 38, 2375
Rakheja, 2004, CLN3P, the Batten disease protein, localizes to membrane lipid rafts (detergent-resistant membranes), Biochem. Biophys. Res. Commun., 317, 988, 10.1016/j.bbrc.2004.03.146
Ezaki, 2003, Characterization of Cln3p, the gene product responsible for juvenile neuronal ceroid lipofuscinosis, as a lysosomal integral membrane glycoprotein, J. Neurochem., 87, 1296, 10.1046/j.1471-4159.2003.02132.x
Kyttala, 2004, Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells, Mol. Biol. Cell, 15, 1313, 10.1091/mbc.E03-02-0120
Jarvela, 1999, Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL), Hum. Mol. Genet., 8, 1091, 10.1093/hmg/8.6.1091
Luiro, 2001, CLN3 protein is targeted to neuronal synapses but excluded from synaptic vesicles: new clues to Batten disease, Hum. Mol. Genet., 10, 2123, 10.1093/hmg/10.19.2123
Haskell, 2000, Batten disease: evaluation of CLN3 mutations on protein localization and function, Hum. Mol. Genet., 9, 735, 10.1093/hmg/9.5.735
Janes, 1996, A model for Batten disease protein CLN3: functional implications from homology and mutations, FEBS Lett., 399, 75, 10.1016/S0014-5793(96)01290-2
Fossale, 2004, Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis, BMC Neurosci., 5, 57, 10.1186/1471-2202-5-57
Das, 2001, Altered levels of high-energy phosphate compounds in fibroblasts from different forms of neuronal ceroid lipofuscinoses: further evidence for mitochondrial involvement, Eur. J. Paediatr. Neurol., 5, 143, 10.1053/ejpn.2000.0451
Cotman, 2002, Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth, Hum. Mol. Genet., 11, 2709, 10.1093/hmg/11.22.2709
Narayan, 2004, CLN3L, a novel protein related to the Batten disease protein, is overexpressed in Cln3−/− mice and in Batten disease, Brain, 127, 1748, 10.1093/brain/awh195
Pearce, 1998, A yeast model for the study of Batten disease, Proc. Natl. Acad. Sci. U. S. A., 95, 6915, 10.1073/pnas.95.12.6915
Pearce, 1999, Investigation of Batten disease with the yeast Saccharomyces cerevisiae, Mol. Genet. Metab., 66, 314, 10.1006/mgme.1999.2820
Pearce, 1999, Action of BTN1, the yeast orthologue of the gene mutated in Batten disease, Nat. Genet., 22, 55, 10.1038/8861
Golabek, 2000, CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer's amyloid-beta protein precursor and cathepsin D in human cells, Mol. Genet. Metab., 70, 203, 10.1006/mgme.2000.3006
Gachet, 2005, btn1, the Schizosaccharomyces pombe homologue of the human Batten disease gene CLN3, regulates vacuole homeostasis, J. Cell Sci., 118, 5525, 10.1242/jcs.02656
Ramirez-Montealegre, 2005, Defective lysosomal arginine transport in juvenile Batten disease, Hum. Mol. Genet., 14, 3759, 10.1093/hmg/ddi406
Padilla-Lopez, 2006, Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity in order to regulate pH imbalance in the vacuole, J. Biol. Chem., 281, 10273, 10.1074/jbc.M510625200
Luiro, 2004, Interconnections of CLN3, Hook1 and Rab proteins link Batten disease to defects in the endocytic pathway, Hum. Mol. Genet., 13, 3017, 10.1093/hmg/ddh321
Mao, 2003, Membrane topology of CLN3, the protein underlying Batten disease, FEBS Lett., 541, 40, 10.1016/S0014-5793(03)00284-9
Baldwin, 2004, The equilibrative nucleoside transporter family, SLC29, Pflugers Arch., 447, 735, 10.1007/s00424-003-1103-2
Kramer, 1996, Mutations in the Drosophila hook gene inhibit endocytosis of the boss transmembrane ligand into multivesicular bodies, J. Cell Biol., 133, 1205, 10.1083/jcb.133.6.1205
Kramer, 1999, Genetic analysis of hook, a gene required for endocytic trafficking in drosophila, Genetics, 151, 675, 10.1093/genetics/151.2.675
Chattopadhyay, 2002, Interaction with Btn2p is required for localization of Rsglp: Btn2p-mediated changes in arginine uptake in Saccharomyces cerevisiae, Eukaryotic Cell, 1, 606, 10.1128/EC.1.4.606-612.2002
Kim, 2003, A role in vacuolar arginine transport for yeast Btn1p and for human CLN3, the protein defective in Batten disease, Proc. Natl. Acad. Sci. U. S. A., 100, 15458, 10.1073/pnas.2136651100
Pisoni, 1987, Important differences in cationic amino acid transport by lysosomal system c and system y+ of the human fibroblast, J. Biol. Chem., 262, 15011, 10.1016/S0021-9258(18)48130-6
Pearce, 2003, Altered amino acid levels in sera of a mouse model for juvenile neuronal ceroid lipofuscinoses, Clin. Chim. Acta, 332, 145, 10.1016/S0009-8981(03)00122-0
Lange, 2004, Novel roles for arginase in cell survival, regeneration, and translation in the central nervous system, J. Nutr., 134, 2812S, 10.1093/jn/134.10.2812S
Chattopadhyay, 2002, An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease, Hum. Mol. Genet., 11, 1421, 10.1093/hmg/11.12.1421
Kim, 2005, Interaction among Btn1p, Btn2p, and Ist2p reveals potential interplay among the vacuole, amino acid levels, and ion homeostasis in the yeast Saccharomyces cerevisiae, Eukaryotic Cell, 4, 281, 10.1128/EC.4.2.281-288.2005
Vesa, 2002, Neuronal ceroid lipofuscinoses are connected at molecular level: interaction of CLN5 protein with CLN2 and CLN3, Mol. Biol. Cell, 13, 2410, 10.1091/mbc.E02-01-0031
Storch, 2004, A dileucine motif and a cluster of acidic amino acids in the second cytoplasmic domain of the batten disease-related CLN3 protein are required for efficient lysosomal targeting, J. Biol. Chem., 279, 53625, 10.1074/jbc.M410930200
Kyttala, 2005, AP-1 and AP-3 facilitate lysosomal targeting of Batten disease protein CLN3 via its dileucine motif, J. Biol. Chem., 280, 10277, 10.1074/jbc.M411862200
Weimer, 2006, Visual deficits in a mouse model of Batten disease are the result of optic nerve degeneration and loss of dorsal lateral geniculate thalamic neurons, Neurobiol. Dis., 22, 284, 10.1016/j.nbd.2005.11.008
Walenta, 2001, The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins, J. Cell Biol., 152, 923, 10.1083/jcb.152.5.923
Weimer, 2005, Elevation of Hook1 in a disease model of Batten disease does not affect a novel interaction between Ankyrin G and Hook1, Biochem. Biophys. Res. Commun., 330, 1176, 10.1016/j.bbrc.2005.03.103
Hryniewicz-Jankowska, 2002, Ankyrins, multifunctional proteins involved in many cellular pathways, Folia Histochem. Cytobiol., 40, 239
Roy, 2005, Axonal transport defects: a common theme in neurodegenerative diseases, Acta Neuropathol. (Berl.), 109, 5, 10.1007/s00401-004-0952-x
Lane, 1996, Apoptosis as the mechanism of neurodegeneration in Batten's disease, J. Neurochem., 67, 677, 10.1046/j.1471-4159.1996.67020677.x
Seigel, 2002, Retinal pathology and function in a Cln3 knockout mouse model of juvenile neuronal ceroid lipofuscinosis (Batten disease), Mol. Cell. Neurosci., 19, 515, 10.1006/mcne.2001.1099
Persaud-Sawin, 2005, Cell death pathways in juvenile Batten disease, Apoptosis, 10, 973, 10.1007/s10495-005-0733-6
Persaud-Sawin, 2002, Motifs within the CLN3 protein: modulation of cell growth rates and apoptosis, Hum. Mol. Genet., 11, 2129, 10.1093/hmg/11.18.2129
Puranam, 1999, CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide, Mol. Genet. Metab., 66, 294, 10.1006/mgme.1999.2834
Rylova, 2002, The CLN3 gene is a novel molecular target for cancer drug discovery, Cancer Res., 62, 801
Savukoski, 1998, CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis, Nat. Genet., 19, 286, 10.1038/975
Isosomppi, 2002, Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein, Hum. Mol. Genet., 11, 885, 10.1093/hmg/11.8.885
Kollmann, 2005, Identification of novel lysosomal matrix proteins by proteome analysis, Proteomics, 5, 3966, 10.1002/pmic.200401247
Tyynela, 1997, Variant late infantile neuronal ceroid-lipofuscinosis: pathology and biochemistry, J. Neuropathol. Exp. Neurol., 56, 369, 10.1097/00005072-199704000-00005
Holmberg, 2004, The mouse ortholog of the neuronal ceroid lipofuscinosis CLN5 gene encodes a soluble lysosomal glycoprotein expressed in the developing brain, Neurobiol. Dis., 16, 29, 10.1016/j.nbd.2003.12.019
Kopra, 2004, A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals neuropathology associated with early aging, Hum. Mol. Genet., 13, 2893, 10.1093/hmg/ddh312
Gao, 2002, Mutations in a novel CLN6-encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse, Am. J. Hum. Genet., 70, 324, 10.1086/338190
Wheeler, 2002, The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein, Am. J. Hum. Genet., 70, 537, 10.1086/338708
Heine, 2004, Defective endoplasmic reticulum-resident membrane protein CLN6 affects lysosomal degradation of endocytosed arylsulfatase A, J. Biol. Chem., 279, 22347, 10.1074/jbc.M400643200
Mole, 2004, CLN6, which is associated with a lysosomal storage disease, is an endoplasmic reticulum protein, Exp. Cell Res., 298, 399, 10.1016/j.yexcr.2004.04.042
Bronson, 1998, Neuronal ceroid lipofuscinosis (nclf), a new disorder of the mouse linked to chromosome 9, Am. J. Med. Genet., 77, 289, 10.1002/(SICI)1096-8628(19980526)77:4<289::AID-AJMG8>3.0.CO;2-I
Jolly, 1989, Ceroid-lipofuscinosis (Batten's disease): pathogenesis and sequential neuropathological changes in the ovine model, Neuropathol. Appl. Neurobiol., 15, 371, 10.1111/j.1365-2990.1989.tb01236.x
Oswald, 2005, Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6), Neurobiol. Dis., 20, 49, 10.1016/j.nbd.2005.01.025
Heine, 2003, Enhanced expression of manganese-dependent superoxide dismutase in human and sheep CLN6 tissues, Biochem. J., 376, 369, 10.1042/bj20030598
Yoshioka, 1994, Oxidants induce transcriptional activation of manganese superoxide dismutase in glomerular cells, Kidney Int., 46, 405, 10.1038/ki.1994.288
Visner, 1990, Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response, J. Biol. Chem., 265, 2856, 10.1016/S0021-9258(19)39880-1
Hirvasniemi, 1994, Neuroradiological findings in the northern epilepsy syndrome, Acta Neurol. Scand., 90, 388, 10.1111/j.1600-0404.1994.tb02746.x
Hirvasniemi, 1995, Northern epilepsy syndrome: clinical course and the effect of medication on seizures, Epilepsia, 36, 792, 10.1111/j.1528-1157.1995.tb01616.x
Ranta, 1999, The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8, Nat. Genet., 23, 233, 10.1038/13868
Lonka, 2005, The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy, BMC Neurosci., 6, 27, 10.1186/1471-2202-6-27
Lonka, 2000, The neuronal ceroid lipofuscinosis CLN8 membrane protein is a resident of the endoplasmic reticulum, Hum. Mol. Genet., 9, 1691, 10.1093/hmg/9.11.1691
Lonka, 2004, Localization of wild-type and mutant neuronal ceroid lipofuscinosis CLN8 proteins in non-neuronal and neuronal cells, J. Neurosci. Res., 76, 862, 10.1002/jnr.20133
Winter, 2002, TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains?, Trends Biochem. Sci., 27, 381, 10.1016/S0968-0004(02)02154-0
Hegde, 1998, TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum, Cell, 92, 621, 10.1016/S0092-8674(00)81130-7
Barz, 1999, Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins, Mol. Biol. Cell, 10, 1043, 10.1091/mbc.10.4.1043
Heinrich, 2000, The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain, Cell, 102, 233, 10.1016/S0092-8674(00)00028-3
Guillas, 2001, C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p, EMBO J., 20, 2655, 10.1093/emboj/20.11.2655
Schorling, 2001, Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisiae, Mol. Biol. Cell, 12, 3417, 10.1091/mbc.12.11.3417
Mizutani, 2005, Mammalian Lass6 and its related family members regulate synthesis of specific ceramides, Biochem. J., 390, 263, 10.1042/BJ20050291
Riebeling, 2003, Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors, J. Biol. Chem., 278, 43452, 10.1074/jbc.M307104200
Venkataraman, 2002, Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells, J. Biol. Chem., 277, 35642, 10.1074/jbc.M205211200
Schulz, 2004, Impaired cell adhesion and apoptosis in a novel CLN9 Batten disease variant, Ann. Neurol., 56, 342, 10.1002/ana.20187
Schulz, 2006, The CLN9 protein, a regulator of dihydroceramide synthase, J. Biol. Chem., 281, 2784, 10.1074/jbc.M509483200
Hermansson, 2005, Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation. EPMR, brain: a case study, J. Neurochem., 95, 609, 10.1111/j.1471-4159.2005.03376.x
Kakela, 2003, Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry, J. Neurochem., 84, 1051, 10.1046/j.1471-4159.2003.01602.x
Messer, 1986, Autosomal dominance in a late-onset motor neuron disease in the mouse, J. Neurogenet., 3, 345, 10.3109/01677068609106858
Vance, 1997, Abnormalities in mitochondria-associated membranes and phospholipid biosynthetic enzymes in the mnd/mnd mouse model of neuronal ceroid lipofuscinosis, Biochim. Biophys. Acta, 1344, 286, 10.1016/S0005-2760(96)00153-1
Griffin, 2002, Vitamin E deficiency and metabolic deficits in neuronal ceroid lipofuscinosis described by bioinformatics, Physiol. Genomics, 11, 195, 10.1152/physiolgenomics.00100.2002
Bertamini, 2002, Mitochondrial oxidative metabolism in motor neuron degeneration (mnd) mouse central nervous system, Eur. J. Neurosci., 16, 2291, 10.1046/j.1460-9568.2002.02299.x
Guarneri, 2004, Retinal oxidation, apoptosis and age- and sex-differences in the mnd mutant mouse, a model of neuronal ceroid lipofuscinosis, Brain Res., 1014, 209, 10.1016/j.brainres.2004.04.040
Battaglioli, 1993, Synaptosomal glutamate uptake declines progressively in the spinal cord of a mutant mouse with motor neuron disease, J. Neurochem., 60, 1567, 10.1111/j.1471-4159.1993.tb03323.x
Mennini, 1998, Spinal cord GLT-1 glutamate transporter and blood glutamic acid alterations in motor neuron degeneration (Mnd) mice, J. Neurol. Sci., 157, 31, 10.1016/S0022-510X(98)00072-0
Mennini, 2002, Expression of glutamate receptor subtypes in the spinal cord of control and mnd mice, a model of motor neuron disorder, J. Neurosci. Res., 70, 553, 10.1002/jnr.10420
Koike, 2003, Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice, Mol. Cell. Neurosci., 22, 146, 10.1016/S1044-7431(03)00035-6
Saftig, 1995, Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells, EMBO J., 14, 3599, 10.1002/j.1460-2075.1995.tb00029.x
Myllykangas, 2005, Cathepsin d-deficient Drosophila recapitulate the key features of neuronal ceroid lipofuscinoses, Neurobiol. Dis., 19, 194, 10.1016/j.nbd.2004.12.019
Augereau, 1994, Characterization of the proximal estrogen-responsive element of human cathepsin D gene, Mol. Endocrinol., 8, 693
Tang, 1987, Evolution in the structure and function of aspartic proteases, J. Cell. Biochem., 33, 53, 10.1002/jcb.240330106
Erickson, 1981, Biosynthesis of a lysosomal enzyme. Partial structure of two transient and functionally distinct NH2-terminal sequences in cathepsin D, J. Biol. Chem., 256, 11224, 10.1016/S0021-9258(19)68581-9
Gieselmann, 1983, Biosynthesis and transport of cathepsin D in cultured human fibroblasts, J. Cell Biol., 97, 1, 10.1083/jcb.97.1.1
Hasilik, 1980, Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight, J. Biol. Chem., 255, 4937, 10.1016/S0021-9258(19)85585-0
Rijnboutt, 1992, Identification of subcellular compartments involved in biosynthetic processing of cathepsin D, J. Biol. Chem., 267, 15665, 10.1016/S0021-9258(19)49587-2
Gieselmann, 1985, Processing of human cathepsin D in lysosomes in vitro, J. Biol. Chem., 260, 3215, 10.1016/S0021-9258(18)89493-5
Kobayashi, 1992, Proteolytic processing sites producing the mature form of human cathepsin D, Int. J. Biochem., 24, 1487, 10.1016/0020-711X(92)90076-D
Storch, 2005, Transport of lysosomal enzymes, 17
Metcalf, 1993, Two crystal structures for cathepsin D: the lysosomal targeting signal and active site, EMBO J., 12, 1293, 10.1002/j.1460-2075.1993.tb05774.x
Junaid, 1999, Increased brain lysosomal pepstatin-insensitive proteinase activity in patients with neurodegenerative diseases, Neurosci. Lett., 264, 157, 10.1016/S0304-3940(99)00095-6
Dhar, 2002, Flupirtine blocks apoptosis in batten patient lymphoblasts and in human postmitotic CLN3- and CLN2-deficient neurons, Ann. Neurol., 51, 448, 10.1002/ana.10143
Stroikin, 2004, Inhibition of autophagy with 3-methyladenine results in impaired turnover of lysosomes and accumulation of lipofuscin-like material, Eur. J. Cell Biol., 83, 583, 10.1078/0171-9335-00433