Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part II: clinical application of a new test battery

Wiley - Tập 23 - Trang 1283-1291 - 2015
E. Herbst1,2, C. Hoser3, C. Hildebrandt4, C. Raschner4, C. Hepperger5, H. Pointner6, C. Fink3,7
1Department of Trauma Surgery and Sports Medicine, Medical University Innsbruck (MUI), Innsbruck, Austria
2Department of Orthopaedic Sports Medicine, Technical University Munich, Munich, Germany
3Sportsclinic Austria, Innsbruck, Austria
4Department of Sport Science, University of Innsbruck, Innsbruck, Austria
5OSM Research Foundation, Innsbruck, Austria
6Sports Physiotherapy Mag. R. Huber, Neu-Rum, Austria
7Research Unit for Orthopedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism/UMIT, Hall, Austria

Tóm tắt

The purpose of this study was to utilize a novel functional test system to facilitate determining the time of return to sports following ACL reconstruction. Sixty-nine patients with unilateral ACL reconstruction were included in this pilot study. All the patients performed a standardized test battery consisting of one- and two-legged stability tests, counter movement jumps, speedy jumps, plyometric jumps and a quick feed test. The first test was administered on average 170.7 ± 75.1 days post-operatively, and the retest was administered on average 239.1 ± 79.7 days post-operatively. The values of the subtests were compared with the normative data of healthy gender- and age-matched controls to determine the functional capacities of patients following ACL reconstruction. After the first and second test, 15.9 and 17.4 % of the patients met the criteria for a “return to non-competitive sports”. One patient fulfilled the criteria for a “return to competitive sports” after the second test battery. The most limiting factor was a poor LSI value of <90 % if the dominant leg was involved and <80 % if the non-dominant leg was involved. This test battery demonstrates that, in terms of neuromuscular abilities, most patients, compared to healthy controls, are most likely not ready for a safe return to sports, even 8 months post-operatively. This should be considered in the future to determine when it is safe to return to sports and should avoid a premature return to competitive sports. III.

Tài liệu tham khảo

Ageberg E, Thomeé R, Neeter C, Silbernagel KG, Roos EM (2008) Muscle strength and functional performance in patients with anterior cruciate ligament injury treated with training and surgical reconstruction or training only: a two to five-year followup. Arthritis Rheum 59:1773–1779 Ardern CL, Taylor NF, Feller JA, Webster KE (2012) Return-to-sport outcomes at 2 to 7 years after anterior cruciate ligament reconstruction surgery. Am J Sports Med 40:41–48 Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med 39:538–543 Augustsson J, Thomeé R, Karlsson J (2004) Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:350–356 Björklund K, Sköld C, Andersson L, Dalén N (2005) Reliability of a criterion-based test of athletes with knee injuries; where the physiotherapist and the patient independently and simultaneously assess the patient’s performance. Knee Surg Sports Traumatol Arthrosc 14:165–175 Bourke HE, Salmon LJ, Waller A, Patterson V, Pinczewski LA (2012) Survival of the anterior cruciate ligament graft and the contralateral ACL at a minimum of 15 years. Am J Sports Med 40:1985–1992 Clark RA, Howells B, Pua YH, Feller J, Whitehead T, Webster KE (2014) Assessment of standing balance deficits in people who have undergone anterior cruciate ligament reconstruction using traditional and modern analysis methods. J Biomech 47:1134–1137 Dustmann M, Schmidt T, Gangey I, Unterhauser FN, Weiler A, Scheffler SU (2008) The extracellular remodeling of free-soft-tissue autografts and allografts for reconstruction of the anterior cruciate ligament: a comparison study in a sheep model. Knee Surg Sports Traumatol Arthrosc 16:360–369 Engelen-van Melick N, Cingel REH, Tijssen MPW, Nijhuis-van der Sanden MWG (2012) Assessment of functional performance after anterior cruciate ligament reconstruction: a systematic review of measurement procedures. Knee Surg Sports Traumatol Arthrosc 21:869–879 Grindem H, Eitzen I, Moksnes H, Snyder-Mackler L, Risberg MA (2012) A pair-matched comparison of return to pivoting sports at 1 year in anterior cruciate ligament-injured patients after a nonoperative versus an operative treatment course. Am J Sports Med 40:2509–2516 Gustavsson A, Neeter C, Thomeé P, Grävare Silbernagel K, Augustsson J, Thomeé R, Karlsson J (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14:778–788 Harris JD, Abrams GD, Bach BR, Williams D, Heidloff D, Bush-Joseph CA, Verma NN, Forsythe B, Cole BJ (2014) Return to sport after ACL reconstruction. Orthopedics 37:e103–e108 Howells BE, Ardern CL, Webster KE (2011) Is postural control restored following anterior cruciate ligament reconstruction? A systematic review. Knee Surg Sports Traumatol Arthrosc 19:1168–1177 Janssen RPA, van der Wijk J, Fiedler A, Schmidt T, Sala HAGM, Scheffler SU (2011) Remodelling of human hamstring autografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1299–1306 Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med 34:269–280 Laboute E, Savalli L, Puig P, Trouve P, Sabot G, Monnier G, Dubroca B (2010) Analysis of return to competition and repeat rupture for 298 anterior cruciate ligament reconstructions with patellar or hamstring tendon autograft in sportspeople. Ann Phys Rehabil Med 53:598–614 Logerstedt D, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L (2012) Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the delaware-oslo ACL cohort study. Am J Sports Med 40:2348–2356 Mayr HO, Stoehr A, Dietrich M, Eisenhart-Rothe R, Hube R, Senger S, Suedkamp NP, Bernstein A (2011) Graft-dependent differences in the ligamentization process of anterior cruciate ligament grafts in a sheep trial. Knee Surg Sports Traumatol Arthrosc 20:947–956 McCullough KA, Phelps KD, Spindler KP, Matava MJ, Dunn WR, Parker RD, MOON Group, Reinke EK (2012) Return to high school- and college-level football after anterior cruciate ligament reconstruction: a multicenter orthopaedic outcomes network (MOON) cohort study. Am J Sports Med 40:2523–2529 Myer GD, Martin L, Ford KR, Paterno MV, Schmitt LC, Heidt RS, Colosimo A, Hewett TE (2012) No association of time from surgery with functional deficits in athletes after anterior cruciate ligament reconstruction: evidence for objective return-to-sport criteria. Am J Sports Med 40:2256–2263 Myklebust G, Holm I, Maehlum S, Engebretsen L, Bahr R (2003) Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury: a follow-up study. Am J Sports Med 31:981–989 Narducci E, Waltz A, Gorski K, Leppla L, Donaldson M (2011) The clinical utility of functional performance tests within one-year post-acl reconstruction: a systematic review. Int J Sports Phys Ther 6:333–342 Neeter C, Gustavsson A, Thomeé P, Augustsson J, Thomeé R, Karlsson J (2006) Development of a strength test battery for evaluating leg muscle power after anterior cruciate ligament injury and reconstruction. Knee Surg Sports Traumatol Arthrosc 14:571–580 Negahban H, Ahmadi P, Salehi R, Mehravar M, Goharpey S (2013) Neurosci Lett 556:118–123 Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR (2007) Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther 87:337–349 Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21:948–957 Scheffler SU, Unterhauser FN, Weiler A (2008) Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:834–842 Thomeé R, Kaplan Y, Kvist J, Myklebust G, Risberg MA, Theisen D, Tsepis E, Werner S, Wondrasch B, Witvrouw E (2011) Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1798–1805 Thomeé R, Neeter C, Gustavsson A, Thomeé P, Augustsson J, Eriksson B, Karlsson J (2012) Variability in leg muscle power and hop performance after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1143–1151 Webster KA, Gribble PA (2010) Time to stabilization of anterior cruciate ligament-reconstructed versus healthy knees in national collegiate athletic association division I female athletes. J Athl Train 45:580–585 Webster KE, Feller JA, Leigh WB, Richmond AK (2014) Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med 42:641–647 Wright RW, Magnussen RA, Dunn WR, Spindler KP (2011) Ipsilateral graft and contralateral acl rupture at five years or more following ACL reconstruction. A systematic review. J Bone Joint Surg Am 93:1159–1165 Zaffagnini S, Pasquale V, Marchesini Reggiani L, Russo A, Agati P, Bacchelli B, Marcacci M (2009) Electron microscopy of the remodelling process in hamstring tendon used as ACL graft. Knee Surg Sports Traumatol Arthrosc 18:1052–1058 Zisch B (2010) Entwicklung einer Testbatterie zur Beurteilung einer Sportrückkehr nach einer Verletzung des vorderen Kreuzbandes. Masterthesis, LFU Innsbruck