Functional analysis tools for post‐translational modification: a post‐translational modification database for analysis of proteins and metabolic pathways

Plant Journal - Tập 99 Số 5 - Trang 1003-1013 - 2019
Edward R. Cruz1, Hung Nguyen1, Tin Nguyen1, Ian S. Wallace1
1Department of Chemistry University of Nevada, Reno Reno NV 89557 USA

Tóm tắt

Summary Post‐translational modifications (PTMs) are critical regulators of protein function, and nearly 200 different types of PTM have been identified. Advances in high‐resolution mass spectrometry have led to the identification of an unprecedented number of PTM sites in numerous organisms, potentially facilitating a more complete understanding of how PTMs regulate cellular behavior. While databases have been created to house the resulting data, most of these resources focus on individual types of PTM, do not consider quantitative PTM analyses or do not provide tools for the visualization and analysis of PTM data. Here, we describe the Functional Analysis Tools for Post‐Translational Modifications (FAT‐PTM) database (https://bioinformatics.cse.unr.edu/fat-ptm/), which currently supports eight different types of PTM and over 49 000 PTM sites identified in large‐scale proteomic surveys of the model organism Arabidopsis thaliana. The FAT‐PTM database currently supports tools to visualize protein‐centric PTM networks, quantitative phosphorylation site data from over 10 different quantitative phosphoproteomic studies, PTM information displayed in protein‐centric metabolic pathways and groups of proteins that are co‐modified by multiple PTMs. Overall, the FAT‐PTM database provides users with a robust platform to share and visualize experimentally supported PTM data, develop hypotheses related to target proteins or identify emergent patterns in PTM data for signaling and metabolic pathways.

Từ khóa

#post‐translational modifications #proteomic database #metabolic regulation #quantitative proteomics #mass spectrometry

Tài liệu tham khảo

Augustine, R.C. and Vierstra, R.D. (2018) SUMOylation: re‐wiring the plant nucleus during stress and development. Curr. Opin. Plant Biol. 45, 143–154. Barber, K.W., Muir, P., Szeligowski, R.V., Rogulina, S., Gerstein, M., Sampson, J.R., Isaacs, F.J. and Rinehart, J. (2018) Encoding human serine phosphopeptides in bacteria for proteome‐wide identification of phosphorylation‐dependent interactions. Nat. Biotechnol. 36, 638–644. Bateman, A., Smart, A., Luciani, A. et al. (2018) The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432. Beltrao, P., Bork, P., Krogan, N.J. and van Noort, V. (2013) Evolution and functional cross‐talk of protein post‐translational modifications. Mol. Syst. Biol. 9, 714. Benschop, J.J., Mohammed, S., O'Flaherty, M., Heck, A.J.R., Slijper, M. and Menke, F.L.H. (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell Proteomics, 6, 1198–1214. Berardini, T.Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E. and Huala, E. (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis, 53, 474–485. Bhaskara, G.B., Wen, T.‐N., Nguyen, T.T. and Verslues, P.E. (2017) Protein phosphatase 2Cs and microtubule‐associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell, 29, 169–191. Breitkreutz, B.‐J., Stark, C., Dolinski, K. et al. (2013) The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update. Database, 2013, bat026. Chen, Y. and Hoehenwarter, W. (2015) Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiol. 169, 3021–3033. Cho, H.‐Y., Shih, M.‐C., Wang, Y.‐T. and Wen, T.‐N. (2016) Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. J. Exp. Bot. 67, 2745–2760. Clark, T.J. and Lu, Y. (2015) Analysis of loss‐of‐function mutants in aspartate kinase and homoserine dehydrogenase genes points to complexity in the regulation of aspartate‐derived amino acid contents. Plant Physiol. 168, 1512–1526. Coon, J.J., Ueberheide, B., Syka, J.E.P., Dryhurst, D.D., Ausio, J., Shabanowitz, J. and Hunt, D.F. (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc. Natl Acad. Sci. USA, 93, 9463–9468. Garavelli, J.S. (2004) The RESID database of protein modifications as a resource and annotation tool. Proteomics, 4, 1527–1533. Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I. and Liu, D.R. (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551, 464–471. Gnad, F., Gunawardena, J. and Mann, M. (2010) PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res. 39, D253–D260. Guo, J., Wang, J., Lee, J.S. and Schultz, P.G. (2008) Site‐specific incorporation of methyl‐ and acetyl‐lysine analogues into recombinant proteins. Angew. Chem. Int. Ed. Engl. 47, 6399–6401. Hemsley, P.A., Weimar, T., Lilley, K.S., Dupree, P. and Grierson, C.S. (2013) A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol. 197, 805–814. Hu, J., Huang, X., Chen, L., Sun, X., Lu, C., Zhang, L., Wang, Y. and Zuo, J. (2015) Site‐specific nitrosoproteomic identification of endogenously S‐nitrosylated proteins in Arabidopsis. Plant Physiol. 167, 1731–1746. Huang, X., Huang, L., Peng, H. et al. (2013) ISPTM: an iterative search algorithm for systematic identification of post‐translational modifications from complex proteome mixtures. J. Proteome Res. 12, 3831–3842. Huang, H., Arighi, C.N., Ross, K.E., Ren, J., Li, G., Chen, S.‐C., Wang, Q., Cowart, J., Vijay‐Shanker, K. and Wu, C.H. (2017) iPTMnet: an integrated resource for protein post‐translational modification network discovery. Nucleic Acids Res. 46, D542–D550. Johnson, A. and Vert, G. (2016) Unraveling K63 polyubiquitination networks by sensor‐based proteomics. Plant Physiol. 171, 1808–1820. Kao, H.‐J., Jhong, J.‐H., Huang, K.‐Y., Cheng, K.‐H., Su, M.‐G., Hsieh, Y.‐C., Lee, T.‐Y. and Huang, H.‐D. (2015) dbPTM 2016: 10‐year anniversary of a resource for post‐translational modification of proteins. Nucleic Acids Res. 44, D435–D446. Kim, W., Bennett, E.J., Huttlin, E.L. et al. (2011) Systematic and quantitative assessment of the ubiquitin‐modified proteome. Mol. Cell 44, 325–340. Kim, D.‐Y., Scalf, M., Smith, L.M. and Vierstra, R.D. (2013) Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell, 25, 1523–1540. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. and Liu, D.R. (2016) Programmable editing of a target base in genomic DNA without double‐stranded DNA cleavage. Nature, 533, 420–424. Koskela, M.M., Brünje, A., Ivanauskaite, A. et al. (2018) Chloroplast acetyltransferase NSI is required for state transitions in Arabidopsis thaliana. Plant Cell, 30, 1695–1709. Kühn, C. (2016) Review: post‐translational cross‐talk between brassinosteroid and sucrose signaling. Plant Sci. 248, 75–81. van der Laarse, S.A.M., Leney, A.C. and Heck, A.J.R. (2018) Crosstalk between phosphorylation and O‐GlcNAcylation: friend or foe. FEBS J. 285, 3152–3167. Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P. and Jørgensen, T.J.D. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteomics, 4, 873–886. Liu, S., Yu, F., Yang, Z., Wang, T., Xiong, H., Chang, C., Yu, W. and Li, N. (2018) Establishment of dimethyl labeling‐based quantitative acetylproteomics in Arabidopsis. Mol. Cell Proteomics, 17, 1010–1027. Majeran, W., Le Caer, J.‐P., Ponnala, L., Meinnel, T. and Giglione, C. (2018) Targeted profiling of Arabidopsis thaliana subproteomes illuminates co‐ and posttranslationally N‐terminal myristoylated proteins. Plant Cell, 30, 543–562. Miller, M.J., Barrett‐Wilt, G.A., Hua, Z. and Vierstra, R.D. (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin‐like modifier conjugation in Arabidopsis. Proc. Natl Acad. Sci. USA, 107, 16512–16517. Miller, M.J., Scalf, M., Rytz, T.C., Hubler, S.L., Smith, L.M. and Vierstra, R.D. (2013) Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress‐induced SUMOylation in Arabidopsis. Mol. Cell Proteomics, 12, 449–463. Minkoff, B.B., Stecker, K.E. and Sussman, M.R. (2015) Rapid phosphoproteomic effects of abscisic acid (ABA) on wild‐type and ABA receptor‐deficient A. thaliana mutants. Mol. Cell Proteomics, 14, 1169–1182. Mithoe, S.C., Boersema, P.J., Berke, L., Snel, B., Heck, A.J.R. and Menke, F.L.H. (2012) Targeted Quantitative Phosphoproteomics Approach for the Detection of Phospho‐tyrosine Signaling in Plants. J. Proteome Res. 11, 438–448. Mueller, L.A., Zhang, P. and Rhee, S.Y. (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol. 132, 453–460. Nühse, T.S., Bottrill, A.R., Jones, A.M.E. and Peck, S.C. (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51, 931–940. Pirman, N.L., Barber, K.W., Aerni, H.R., Ma, N.J., Haimovich, A.D., Rogulina, S., Isaacs, F.J. and Rinehart, J. (2015) A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nat. Commun. 6, 8130. Roitinger, E., Hofer, M., Köcher, T., Pichler, P., Novatchkova, M., Yang, J., Schlögelhofer, P. and Mechtler, K. (2015) Quantitative phosphoproteomics of the ataxia telangiectasia‐mutated (ATM) and ataxia telangiectasia‐mutated and Rad3‐related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol. Cell Proteomics, 14, 556–571. Rosen, B.D., Cheng, C.‐Y., Town, C.D. et al. (2014) Araport: the Arabidopsis information portal. Nucleic Acids Res. 43, D1003–D1009. Roy, K.R., Smith, J.D., Vonesch, S.C. et al. (2018) Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat. Biotechnol. 36, 512–520. Rytz, T.C., Miller, M.J., McLoughlin, F., Augustine, R.C., Marshall, R.S., Juan, Y., Charng, Y., Scalf, M., Smith, L.M. and Vierstra, R.D. (2018) SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell, 30, 1077–1099. Schläpfer, P., Zhang, P., Wang, C. et al. (2017) Genome‐wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol. 173, 2041–2059. Strasser, R. (2016) Plant protein glycosylation. Glycobiology, 26, 926–939. Svozil, J., Hirsch‐Hoffmann, M., Dudler, R., Gruissem, W. and Baerenfaller, K. (2014) Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A. Mol. Cell Proteomics, 13, 1523–1536. Tomita, T., Hirayama, S., Sakurai, Y., Ohte, Y., Yoshihara, H., Saeki, Y., Hamazaki, J. and Murata, S. (2019) Specific modification of aged proteasomes revealed by tag‐exchangeable knock‐in mice. Mol. Cell. Biol. 39, e00426–18. Tsur, D., Tanner, S., Zandi, E., Bafna, V. and Pevzner, P.A. (2005) Identification of post‐translational modifications by blind search of mass spectra. Nat. Biotechnol. 23, 1562–1567. Turnbull, D. and Hemsley, P.A. (2017) Fats and function: protein lipid modifications in plant cell signalling. Curr. Opin. Plant Biol. 40, 63–70. Via, A., Gould, C.M., Chica, C., Dinkel, H., Jensen, L.J., Diella, F. and Gibson, T.J. (2010) Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res. 39, D261–D267. Walton, A., Stes, E., Cybulski, N. et al. (2016) It's time for some “site”‐seeing: novel tools to monitor the ubiquitin landscape in Arabidopsis thaliana. Plant Cell, 28, 6–16. Wang, K., Yang, Z., Qing, D. et al. (2018) Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch‐delayed bolting. Proc. Natl Acad. Sci. USA, 115, E10265–E10274. Withers, J. and Dong, X. (2017) Post‐translational regulation of plant immunity. Curr. Opin. Plant Biol. 38, 124–132. Xu, G., Paige, J.S. and Jaffrey, S.R. (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat. Biotechnol. 28, 868–873. Xu, S.‐L., Medzihradszky, K.F., Wang, Z.‐Y., Burlingame, A.L. and Chalkley, R.J. (2016) N‐glycopeptide profiling in arabidopsis inflorescence. Mol. Cell Proteomics, 15, 2048–2054. Xu, S.‐L., Chalkley, R.J., Maynard, J.C. et al. (2017) Proteomic analysis reveals O‐GlcNAc modification on proteins with key regulatory functions in Arabidopsis. Proc. Natl Acad. Sci. USA, 114, E1536–E1543. Yao, Q., Ge, H., Wu, S., Zhang, N., Chen, W., Xu, C., Gao, J., Thelen, J.J. and Xu, D. (2013) P3DB 3.0: from plant phosphorylation sites to protein networks. Nucleic Acids Res. 42, D1206–D1213. Zeng, W., Ford, K.L., Bacic, A. and Heazlewood, J.L. (2018) N‐linked glycan micro‐heterogeneity in glycoproteins of arabidopsis. Mol. Cell Proteomics, 17, 413–421. Zhang, H., Zhou, H., Berke, L., Heck, A.J.R., Mohammed, S., Scheres, B. and Menke, F.L.H. (2013) Quantitative phosphoproteomics after auxin‐stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Mol. Cell Proteomics, 12, 1158–1169. Zhang, C., Guo, X., Xie, H. et al. (2018) Quantitative phosphoproteomics of lectin receptor‐like kinase VI.4 dependent abscisic acid response in Arabidopsis thaliana. Physiol. Plant. 165, 728–745. Zulawski, M., Braginets, R. and Schulze, W.X. (2012) PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res. 41, D1176–D1184.