Agustin Baron-Jaimes1, Oscar Andrés Jaramillo‐Quintero2,1, Robert Endean Gamboa1, A. Medína3, Marina E. Rincón1
1Instituto de Energías Renovables Universidad Nacional Autónoma de México Privada Xochicalco S/N Temixco C.P. 62580 Mor. México
2Catedrático CONACYT-Instituto de Energías Renovables Universidad Nacional Autónoma de México Privada Xochicalco S/N Temixco C.P. 62580 Mor. México
3Instituto de Investigación en Metalurgia y Materiales Universidad Michoacana de San Nicolás de Hidalgo Avenida Francisco. J. Mújica S/N Ciudad Universitaria Morelia Michoacán C.P. 58030 México
Tóm tắt
Electron transport materials (ETMs) are considered a keystone component of third‐generation solar cells. Among the alternative ETM, metal oxide bilayers have attracted increasing attention due to their easy processing and tunability of cascade energy alignment. Herein, a metal oxide bilayer that combines ZnO and TiO2 compact films (ZnO/TiO2) is implemented as ETM for solution‐processed Sb2S3 planar solar cells. The bilayer ETM achieves the highest photovoltaic performance when compared with devices based on single ETM. Thus, the optimized device based on ZnO/TiO2 ETM yields a champion efficiency of 5.08% with an open‐circuit voltage of 0.58 V and a current density of 16.17 mA cm−2. Using surface photovoltage, electrochemical impedance spectroscopy, and current density–voltage analyses, it is demonstrated that the use of ZnO/TiO2 promotes charge injection, decreases series resistance and shutting paths, and leads to the reduction of charge recombination at the ETM/Sb2S3 interface.