Functional Analysis of Single Nucleotide Polymorphism in ZUFSP Protein and Implication in Pathogenesis

Mary B. Ajadi1,2, Opeyemi Soremekun3, Adeniyi T. Adewumi3, Hezekiel M. Kumalo4, Mahmoud E. S. Soliman5
1Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
2Chemical Pathology Department, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria
3Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
4Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban 4000, South Africa.
5Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baker RT, Tobias JW, Varshavsky A (1992) Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family. J Biol Chem 267:23364–23375

Matsui SI, Sandberg AA, Negoro S et al (1982) Isopeptidase: a novel eukaryotic enzyme that cleaves isopeptide bonds. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.79.5.1535

Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S (2019) Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep. https://doi.org/10.5483/BMBRep.2019.52.3.048

Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S (2019) Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep 52:181–189

Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. https://doi.org/10.1146/annurev-biochem-061516-044916

Nijman SMB, Luna-Vargas MPA, Velds A et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell. https://doi.org/10.1016/j.cell.2005.11.007

Kwasna D, Abdul Rehman SA, Natarajan J et al (2018) Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol Cell. https://doi.org/10.1016/j.molcel.2018.02.023

Hanpude P, Bhattacharya S, Dey AK, Maiti TK (2015) Deubiquitinating enzymes in cellular signaling and disease regulation. IUBMB Life. https://doi.org/10.1002/iub.1402

D’Arcy P, Wang X, Linder S (2015) Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2014.11.002

Jemal A, Bray F, Ferlay J (1999) Global cancer statistics: 2011. CA Cancer J Clin. https://doi.org/10.3322/caac.20107.Available

Landegren U, Nilsson M, Kwok PY (1998) Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res 8:769–776

Ke X, Taylor MS, Cardon LR (2008) Singleton SNPs in the human genome and implications for genome-wide association studies. Eur J Hum Genet 16:506–515. https://doi.org/10.1038/sj.ejhg.5201987

Shastry BS (2002) SNP alleles in human disease and evolution. J Hum Genet 47:561–566

Dakal TC, Kala D, Dhiman G et al (2017) Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Sci Rep. https://doi.org/10.1038/s41598-017-06575-4

Sheryl ST et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

Abdelraheem NE, El-tayeb GM, Osman LO, Abedlrhman SA (2016) A comprehensive in silico analysis of the functional and structural impact of non-synonymous single nucleotide polymorphisms in the human KRAS gene. Am J Bioinform Res 6:32–55. https://doi.org/10.5923/j.bioinformatics.20160602.02

Vaser R, Adusumalli S, Leng SN et al (2016) SIFT missense predictions for genomes. Nat Protoc 11:1–9. https://doi.org/10.1038/nprot.2015.123

Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

Hecht M, Bromberg Y, Rost B (2015) Better prediction of functional effects for sequence variants. BMC Genom. https://doi.org/10.1186/1471-2164-16-S8-S1

Bromberg Y, Overton J, Vaisse C et al (2009) In silico mutagenesis: a case study of the melanocortin 4 receptor. FASEB J 23:3059–3069. https://doi.org/10.1096/fj.08-127530

Yachdav G, Hecht M, Pasmanik-Chor M et al (2014) HeatMapViewer: interactive display of 2D data in biology. F1000Research. https://doi.org/10.12688/f1000research.3-48.v1

Choi Y, Sims GE, Murphy S et al (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688. https://doi.org/10.1371/journal.pone.0046688

Capriotti E, Fariselli P, Rossi I, Casadio R (2008) A three-state prediction of single point mutations on protein stability changes. BMC Bioinform 9(Suppl 2):S6. https://doi.org/10.1186/1471-2105-9-S2-S6

Emidio C, Fariselli P (2017) PhD-SNPg: a webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res 45(W1): W247–W252

Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, De La Cruz X, Orozco M (2005) PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21:3176–3178

Calabrese R, Capriotti E, Fariselli P et al (2009) Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 30:1237–1244. https://doi.org/10.1002/humu.21047

Emidio C, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33(2):W306–W310. https://doi.org/10.1093/nar/gki375.

Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Prot Struct Funct Genet 62:1125–1132. https://doi.org/10.1002/prot.20810

Liang-Tsung Huang, Gromiha MM, Ho S (2007) iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics 23(10):1292–1293. https://doi.org/10.1093/bioinformatics/btm100

Emidio C, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33(2):W306–W310. https://doi.org/10.1093/nar/gki375.

Witvliet DK, et al. (2016) ELASPIC web-server: proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity. Bioinformatics 32(10):1589–1591. https://doi.org/10.1093/bioinformatics/btw031

Pejaver V, Hsu WL, Xin F et al (2014) The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Prot Sci 23:1077–1093. https://doi.org/10.1002/pro.2494

Petersen B, Petersen T. N., Andersen P., et al (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol, 9:51, 1-10. https://doi.org/10.1186/1472-6807-9-51

Rodrigues CHM, Myung Y, Pires DEV, Ascher DB (2019) MCSM-PPI2: predicting the effects of mutations on protein-protein interactions. Nucleic Acids Res 47:W338–W344. https://doi.org/10.1093/nar/gkz383

Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290

Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

Berendsen HJC, Postma JPM, Van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095. https://doi.org/10.1021/ct400341p

Soremekun OS, Soliman MES (2019) From genomic variation to protein aberration: mutational analysis of single nucleotide polymorphism present in ULBP6 gene and implication in immune response. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2019.103354

Nailwal M, Chauhan JB (2017) In silico analysis of non-synonymous single nucleotide polymorphisms in human DAZL gene associated with male infertility. Syst Biol Reprod Med. https://doi.org/10.1080/19396368.2017.1305466

Suresh PS, Venkatesh T, Rajan T (2012) Single nucleotide polymorphisms in genes that are common targets of luteotropin and luteolysin in primate corpus luteum: computational exploration. Gene 511:353–357. https://doi.org/10.1016/j.gene.2012.09.076

Brender JR, Zhang Y (2015) Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLOS Comput Biol 11:e1004494. https://doi.org/10.1371/journal.pcbi.1004494

Wang LL, Li Y, Zhou SF (2009) A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450E. Drug Metab Dispos 37:977–991. https://doi.org/10.1124/dmd.108.026047