Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides

Springer Science and Business Media LLC - Tập 13 - Trang 1-12 - 2012
Qiang Liu1, Yao Huang2, Jianxin Shen3, Scott Steffensen4, Jie Wu1,3,5
1Divisions of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, USA
2Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, USA
3Department of Physiology, Shantou University Medical College, Guangdong, China
4Department of Psychology, Brigham Young University Provo, Provo, USA
5Departments of Bioengineering, Arizona State University, Tempe, USA

Tóm tắt

β-amyloid (Aβ) accumulation is described as a hallmark of Alzheimer’s disease (AD). Aβ perturbs a number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ. GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs, which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to dihydro-β-erythroidine (DHβE), a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were observed in identified hippocampal interneurons prepared from GFP-GAD mice. These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of hippocampal function, which may be relevant to learning and memory deficits in AD.

Tài liệu tham khảo

Selkoe DJ: Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 1999, 399 (6738 Suppl): A23-31. Goedert M, Spillantini MG: A century of Alzheimer's disease. Science. 2006, 314 (5800): 777-781. 10.1126/science.1132814. Adams CE, Broide RS, Chen Y, Winzer-Serhan UH, Henderson TA, Leslie FM, Freedman R: Development of the alpha7 nicotinic cholinergic receptor in rat hippocampal formation. Brain Res Dev Brain Res. 2002, 139 (2): 175-187. 10.1016/S0165-3806(02)00547-3. Buccafusco JJ, Letchworth SR, Bencherif M, Lippiello PM: Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic-pharmacodynamic discordance. Trends Pharmacol Sci. 2005, 26 (7): 352-360. 10.1016/j.tips.2005.05.007. Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P: Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem. 2005, 48 (15): 4705-4745. 10.1021/jm040219e. Liu Q, Zhang J, Zhu H, Qin C, Chen Q, Zhao B: Dissecting the signaling pathway of nicotine-mediated neuroprotection in a mouse Alzheimer disease model. FASEB J. 2007, 21 (1): 61-73. Mudo G, Belluardo N, Fuxe K: Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm. 2007, 114 (1): 135-147. 10.1007/s00702-006-0561-z. Kawai H, Zago W, Berg DK: Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci. 2002, 22 (18): 7903-7912. Liu Q, Kawai H, Berg DK: beta -Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci USA. 2001, 98 (8): 4734-4739. 10.1073/pnas.081553598. Sudweeks SN, Yakel JL: Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J Physiol. 2000, 527 (Pt 3): 515-528. Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB: beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem. 2000, 275 (8): 5626-5632. 10.1074/jbc.275.8.5626. Wang HY, Lee DH, Davis CB, Shank RP: Amyloid peptide Abeta(1–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem. 2000, 75 (3): 1155-1161. Pettit DL, Shao Z, Yakel JL: beta-Amyloid(1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci. 2001, 21 (1): RC120. Grassi F, Palma E, Tonini R, Amici M, Ballivet M, Eusebi F: Amyloid beta(1–42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors. J Physiol. 2003, 547 (Pt 1): 147-157. Lee DH, Wang HY: Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to beta-amyloid1-40 and beta-amyloid1-42. J Neurobiol. 2003, 55 (1): 25-30. 10.1002/neu.10203. Wu J, Kuo YP, George AA, Xu L, Hu J, Lukas RJ: beta-Amyloid directly inhibits human alpha4beta2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J Biol Chem. 2004, 279 (36): 37842-37851. 10.1074/jbc.M400335200. Liu Q, Huang Y, Xue F, Simard A, DeChon J, Li G, Zhang J, Lucero L, Wang M, Sierks M, et al: A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci. 2009, 29 (4): 918-929. 10.1523/JNEUROSCI.3952-08.2009. Dineley KT, Bell KA, Bui D, Sweatt JD: beta -Amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Biol Chem. 2002, 277 (28): 25056-25061. 10.1074/jbc.M200066200. Fu W, Jhamandas JH: Beta-amyloid peptide activates non-alpha7 nicotinic acetylcholine receptors in rat basal forebrain neurons. J Neurophysiol. 2003, 90 (5): 3130-3136. 10.1152/jn.00616.2003. Pym L, Kemp M, Raymond-Delpech V, Buckingham S, Boyd CA, Sattelle D: Subtype-specific actions of beta-amyloid peptides on recombinant human neuronal nicotinic acetylcholine receptors (alpha7, alpha4beta2, alpha3beta4) expressed in Xenopus laevis oocytes. Br J Pharmacol. 2005, 146 (7): 964-971. 10.1038/sj.bjp.0706403. Larner AJ: Epileptic Seizures in AD Patients. Neuromolecular Med. 2010, 12 (1): 71-7. 10.1007/s12017-009-8076-z. Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, Penke B, Zilberter Y, Harkany T, Pitkanen A, et al: Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci. 2009, 29 (11): 3453-3462. 10.1523/JNEUROSCI.5215-08.2009. Palop JJ, Mucke L: Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol. 2009, 66 (4): 435-440. Palop JJ, Mucke L: Synaptic Depression and Aberrant Excitatory Network Activity in Alzheimer's Disease: Two Faces of the Same Coin?. Neuromolecular Med. 2009, 12 (1): 48-55. Vogt DL, Thomas D, Galvan V, Bredesen DE, Lamb BT, Pimplikar SW: Abnormal neuronal networks and seizure susceptibility in mice overexpressing the APP intracellular domain. Neurobiol Aging. 2011, 32 (9): 1725-1729. 10.1016/j.neurobiolaging.2009.09.002. Wu MN, Li XY, Guo F, Qi JS: Involvement of nicotinic acetylcholine receptors in amyloid beta-fragment-induced intracellular Ca(2+) elevation in cultured rat cortical neurons. Sheng Li Xue Bao. 2009, 61 (6): 517-525. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, et al: Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron. 2007, 55 (5): 697-711. 10.1016/j.neuron.2007.07.025. Son JH, Winzer-Serhan UH: Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs in rat hippocampal GABAergic interneurons. J Comp Neurol. 2008, 511 (2): 286-299. 10.1002/cne.21828. Buhler AV, Dunwiddie TV, Buhler AV, Dunwiddie TV: alpha7 nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons. J Neurophysiol. 2002, 87 (1): 548-557. Wu J, George AA, Schroeder KM, Xu L, Marxer-Miller S, Lucero L, Lukas RJ: Electrophysiological, pharmacological, and molecular evidence for alpha7-nicotinic acetylcholine receptors in rat midbrain dopamine neurons. J Pharmacol Exp Ther. 2004, 311 (1): 80-91. 10.1124/jpet.104.070417. Yang K, Hu J, Lucero L, Liu Q, Zheng C, Zhen X, Jin G, Lukas RJ, Wu J: Distinctive nicotinic acetylcholine receptor functional phenotypes of rat ventral tegmental area dopaminergic neurons. J Physiol. 2009, 587 (Pt 2): 345-361. Chen D, Patrick JW: The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit. J Biol Chem. 1997, 272 (38): 24024-24029. 10.1074/jbc.272.38.24024. Ji D, Lape R, Dani JA: Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 2001, 31 (1): 131-141. 10.1016/S0896-6273(01)00332-4. Hefft S, Hulo S, Bertrand D, Muller D: Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slices. J Physiol. 1999, 515 (Pt 3): 769-776. Dominguez Del Toro E, Juiz JM, Peng X, Lindstrom J, Criado M: Immunocytochemical localization of the alpha 7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system. J Comp Neurol. 1994, 349 (3): 325-342. 10.1002/cne.903490302. Mielke JG, Mealing GA: Cellular distribution of the nicotinic acetylcholine receptor alpha7 subunit in rat hippocampus. Neurosci Res. 2009, 65 (3): 296-306. 10.1016/j.neures.2009.08.003. Jones S, Yakel JL: Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol. 1997, 504 (Pt 3): 603-610. Alkondon M, Pereira EF, Albuquerque EX: alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res. 1998, 810 (1–2): 257-263. McQuiston AR, Madison DV: Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci. 1999, 19 (8): 2887-2896. Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddie TV: Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci. 1998, 18 (4): 1187-1195. Lamb PW, Melton MA, Yakel JL: Inhibition of neuronal nicotinic acetylcholine receptor channels expressed in Xenopus oocytes by beta-amyloid1-42 peptide. J Mol Neurosci. 2005, 27 (1): 13-21. 10.1385/JMN:27:1:013. Spencer JP, Weil A, Hill K, Hussain I, Richardson JC, Cusdin FS, Chen YH, Randall AD: Transgenic mice over-expressing human beta-amyloid have functional nicotinic alpha 7 receptors. Neuroscience. 2006, 137 (3): 795-805. 10.1016/j.neuroscience.2005.10.007. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, et al: Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008, 14 (8): 837-842. 10.1038/nm1782. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002, 297 (5580): 353-356. 10.1126/science.1072994. Cirrito JR, Holtzman DM: Amyloid beta and Alzheimer disease therapeutics: the devil may be in the details. J Clin Invest. 2003, 112 (3): 321-323. Burghaus L, Schutz U, Krempel U, De Vos RA, Jansen Steur EN, Wevers A, Lindstrom J, Schroder H: Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res. 2000, 76 (2): 385-388. 10.1016/S0169-328X(00)00031-0. Nordberg A: Nicotinic receptor abnormalities of Alzheimer's disease: therapeutic implications. Biol Psychiatry. 2001, 49 (3): 200-210. 10.1016/S0006-3223(00)01125-2. Levin ED, Rezvani AH: Nicotinic treatment for cognitive dysfunction. Curr Drug Targets CNS Neurol Disord. 2002, 1 (4): 423-431. 10.2174/1568007023339102. Geerts H: Indicators of neuroprotection with galantamine. Brain Res Bull. 2005, 64 (6): 519-524. 10.1016/j.brainresbull.2004.11.002. Lahiri DK, Utsuki T, Chen D, Farlow MR, Shoaib M, Ingram DK, Greig NH: Nicotine reduces the secretion of Alzheimer's beta-amyloid precursor protein containing beta-amyloid peptide in the rat without altering synaptic proteins. Ann N Y Acad Sci. 2002, 965: 364-372. Nagele RG, D'Andrea MR, Anderson WJ, Wang HY: Intracellular accumulation of beta-amyloid(1–42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience. 2002, 110 (2): 199-211. 10.1016/S0306-4522(01)00460-2. Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A: Activation of m1 muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem. 1996, 66 (2): 877-880. Freund TF, Buzsaki G: Interneurons of the hippocampus. Hippocampus. 1996, 6 (4): 347-470. Khiroug SS, Harkness PC, Lamb PW, Sudweeks SN, Khiroug L, Millar NS, Yakel JL: Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J Physiol. 2002, 540 (Pt 2): 425-434. Dineley KT, Xia X, Bui D, Sweatt JD, Zheng H: Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J Biol Chem. 2002, 277 (25): 22768-22780. 10.1074/jbc.M200164200. Hellstrom-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A, Thomas A, Perry E, Bednar I, Nordberg A: Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. Eur J Neurosci. 2004, 19 (10): 2703-2710. Hellstrom-Lindahl E, Mousavi M, Ravid R, Nordberg A: Reduced levels of Abeta 40 and Abeta 42 in brains of smoking controls and Alzheimer's patients. Neurobiol Dis. 2004, 15 (2): 351-360. 10.1016/j.nbd.2003.11.024. Hellstrom-Lindahl E, Mousavi M, Zhang X, Ravid R, Nordberg A: Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain. Brain Res Mol Brain Res. 1999, 66 (1–2): 94-103. Jones IW, Westmacott A, Chan E, Jones RW, Dineley K, O'Neill MJ, Wonnacott S: Alpha7 nicotinic acetylcholine receptor expression in Alzheimer's disease: receptor densities in brain regions of the APP(SWE) mouse model and in human peripheral blood lymphocytes. J Mol Neurosci. 2006, 30 (1–2): 83-84. Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O: Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science. 2008, 321 (5896): 1686-1689. 10.1126/science.1162844. Alkondon M, Albuquerque EX: Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. J Neurophysiol. 2001, 86 (6): 3043-3055. Ji D, Dani JA: Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons. J Neurophysiol. 2000, 83 (5): 2682-2690. Potier B, Jouvenceau A, Epelbaum J, Dutar P: Age-related alterations of GABAergic input to CA1 pyramidal neurons and its control by nicotinic acetylcholine receptors in rat hippocampus. Neuroscience. 2006, 142 (1): 187-201. 10.1016/j.neuroscience.2006.06.040. Yan Z, Feng J: Alzheimer's disease: interactions between cholinergic functions and beta-amyloid. Curr Alzheimer Res. 2004, 1 (4): 241-248. 10.2174/1567205043331992. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T: Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol. 2003, 467 (1): 60-79. 10.1002/cne.10905. Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, McCarley RW: Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci. 2008, 27 (2): 352-363. 10.1111/j.1460-9568.2008.06024.x. Wu J, Chan P, Schroeder KM, Ellsworth K, Partridge LD: 1-Methyl-4-phenylpridinium (MPP+)-induced functional run-down of GABA(A) receptor-mediated currents in acutely dissociated dopaminergic neurons. J Neurochem. 2002, 83 (1): 87-99. 10.1046/j.1471-4159.2002.01099.x.