Function classes defined from local approximations by solutions to hypoelliptic equations

Springer Science and Business Media LLC - Tập 47 - Trang 324-340 - 2006
A. V. Pokrovskii1
1Institute of Mathematics of the National Academy of Sciences, Kiev, Ukraine

Tóm tắt

We describe anisotropic function classes of the Campanato—Morrey type in terms of local approximations by solutions to the equation P(D)f = 0 in integral metrics, where P(D) is a quasihomogeneous hypoelliptic linear differential operator with constant coefficients.

Tài liệu tham khảo

Fedorov V. S., “Sur la representatione des fonctions analitiques au voisinage d’un ensemble de ses points singulier,” Mat. Sb., 35, 237–250 (1928). Kaufman R. and Wu J.-M., “Removable singularities for analytic or subharmonic functions,” Ark. Mat., 18, No. 4, 107–116 (1980). Ishchanov B. Zh., “Nonclosed singular sets for weak solutions of linear differential equations,” in: Geometric Questions in the Theory of Functions and Sets [in Russian], Kalinin Univ., Kalinin, 1989, pp. 41–49. Ishchanov B. Zh., “The representation of solutions to equations of certain classes in terms of potentials of measures concentrated on the set of singularities of these solutions,” Dokl. Akad. Nauk Ross. Akad. Nauk, 358, No. 4, 455–458 (1998). Dolzhenko E. P., “The work of D. E. Men’shov in the theory of analytic functions and the present state of the theory of monogeneity,” Uspekhi Mat. Nauk, 47, No. 5, 67–96 (1992). Pokrovskii A. V., “Local approximations by solutions of hypoelliptic equations, and removable singularities,” Dokl. Akad. Nauk Ross. Akad. Nauk, 367, No. 1, 15–17 (1999). Hörmander L., The Analysis of Linear Partial Differential Operators. Vol. 2 [Russian translation], Mir, Moscow (1986). Volevich L. R., “Local properties of solutions to quasielliptic systems,” Mat. Sb., 59, No. 3, 3–50 (1962). Pokrovskii A. V., “Mean value theorems for solutions of linear partial differential equations,” Mat. Zametki, 64, No. 2, 260–272 (1998). Peetre J., “On the theory of L p,λ spaces,” J. Funct. Anal., 4, 71–87 (1968). Besov O. V., Il’in V. P., and Nikol’skii S. M., Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1996). Adzhiev S. S., “Characterizations of the function spaces B sp,q (G), L sp, q (G), and W sp (G) and embeddings in BMO(G),” Trudy Mat. Inst. Steklov, 1997, 214, 7–24; Corrections: Trudy Mat. Inst. Steklov, 1997, 219, 463. Adzhiev S. S., “Characterizations of B sp,q (G), L sp,q (G), W sp (G) and certain other function spaces. Applications,” Trudy Mat. Inst. Steklov., 227, 7–42 (1999). Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Problems, Princeton Univ. Press, Princeton (1983). Krein S. G., Petunin Yu. I., and Semenov E. M., Interpolation of Linear Operators [in Russian], Nauka, Moscow (1978). Bari N. K. and Stechkin S. B., “Best approximations and differential properties of two conjugate functions,” Trudy Moskov. Mat. Obshch., 5, 483–521 (1956). Spanne S., “Some function spaces defined using the mean oscillation over cubes,” Ann. Scuola Norm. Sup. Pisa. Cl. Sci (3), 19, 593–608 (1965). DiBenedetto E., Degenerate Parabolic Equations, Springer-Verlag, New York (1993). Garnett J., Bounded Analytic Functions [Russian translation], Mir, Moscow (1984). Shevchuk I. A., Approximation by Polynomials and Traces of Continuous Functions on an Interval [in Russian], Naukova Dumka, Kiev (1992). Guseinov E. G., “Embedding theorems of classes of continuous functions,” Izv. Akad. Nauk Azerbaidžan. SSR Ser. Mat., 2, 57–60 (1979). Besov O. V., “Continuation of a function beyond the boundary of a domain with preservation of difference-differential properties in L p,” Mat. Sb., 66, No. 1, 80–96 (1965).